MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetdmdm Structured version   Visualization version   GIF version

Theorem psmetdmdm 22110
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetdmdm (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)

Proof of Theorem psmetdmdm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2 ispsmet 22109 . . . . . 6 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
32biimpa 501 . . . . 5 ((𝑋 ∈ V ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
41, 3mpancom 703 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
54simpld 475 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
6 fdm 6051 . . . 4 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
76dmeqd 5326 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom dom 𝐷 = dom (𝑋 × 𝑋))
85, 7syl 17 . 2 (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
9 dmxpid 5345 . 2 dom (𝑋 × 𝑋) = 𝑋
108, 9syl6req 2673 1 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653   × cxp 5112  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  *cxr 10073  cle 10075   +𝑒 cxad 11944  PsMetcpsmet 19730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-psmet 19738
This theorem is referenced by:  blfvalps  22188  metuval  22354  metidval  29933  pstmval  29938
  Copyright terms: Public domain W3C validator