![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psmeasurelem | Structured version Visualization version GIF version |
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
psmeasurelem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
psmeasurelem.h | ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) |
psmeasurelem.m | ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) |
psmeasurelem.mf | ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) |
psmeasurelem.y | ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
psmeasurelem.dj | ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) |
Ref | Expression |
---|---|
psmeasurelem | ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmeasurelem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) | |
2 | psmeasurelem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | pwexg 4850 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
5 | ssexg 4804 | . . . 4 ⊢ ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V) | |
6 | 1, 4, 5 | syl2anc 693 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
7 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
8 | uniiun 4573 | . . 3 ⊢ ∪ 𝑌 = ∪ 𝑦 ∈ 𝑌 𝑦 | |
9 | psmeasurelem.h | . . . 4 ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) | |
10 | elpwg 4166 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) | |
11 | 6, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
12 | 1, 11 | mpbird 247 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋) |
13 | pwpwuni 39225 | . . . . . . 7 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) | |
14 | 6, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ ∪ 𝑌 ∈ 𝒫 𝑋)) |
15 | 12, 14 | mpbid 222 | . . . . 5 ⊢ (𝜑 → ∪ 𝑌 ∈ 𝒫 𝑋) |
16 | 15 | elpwid 4170 | . . . 4 ⊢ (𝜑 → ∪ 𝑌 ⊆ 𝑋) |
17 | 9, 16 | fssresd 6071 | . . 3 ⊢ (𝜑 → (𝐻 ↾ ∪ 𝑌):∪ 𝑌⟶(0[,]+∞)) |
18 | psmeasurelem.dj | . . 3 ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) | |
19 | 6, 7, 8, 17, 18 | sge0iun 40636 | . 2 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
20 | psmeasurelem.m | . . . 4 ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) | |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥)))) |
22 | reseq2 5391 | . . . . 5 ⊢ (𝑥 = ∪ 𝑌 → (𝐻 ↾ 𝑥) = (𝐻 ↾ ∪ 𝑌)) | |
23 | 22 | fveq2d 6195 | . . . 4 ⊢ (𝑥 = ∪ 𝑌 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
24 | 23 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = ∪ 𝑌) → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
25 | fvexd 6203 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐻 ↾ ∪ 𝑌)) ∈ V) | |
26 | 21, 24, 15, 25 | fvmptd 6288 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝐻 ↾ ∪ 𝑌))) |
27 | psmeasurelem.mf | . . . . . 6 ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) | |
28 | 27, 1 | fssresd 6071 | . . . . 5 ⊢ (𝜑 → (𝑀 ↾ 𝑌):𝑌⟶(0[,]+∞)) |
29 | 28 | feqmptd 6249 | . . . 4 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦))) |
30 | fvres 6207 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) | |
31 | 7, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (𝑀‘𝑦)) |
32 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥)))) |
33 | reseq2 5391 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐻 ↾ 𝑥) = (𝐻 ↾ 𝑦)) | |
34 | 33 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ 𝑦))) |
35 | 34 | adantl 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥 = 𝑦) → (Σ^‘(𝐻 ↾ 𝑥)) = (Σ^‘(𝐻 ↾ 𝑦))) |
36 | 1 | sselda 3603 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝒫 𝑋) |
37 | fvexd 6203 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) ∈ V) | |
38 | 32, 35, 36, 37 | fvmptd 6288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑀‘𝑦) = (Σ^‘(𝐻 ↾ 𝑦))) |
39 | elssuni 4467 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝑌 → 𝑦 ⊆ ∪ 𝑌) | |
40 | resabs1 5427 | . . . . . . . . . 10 ⊢ (𝑦 ⊆ ∪ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) | |
41 | 39, 40 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑌 → ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦) = (𝐻 ↾ 𝑦)) |
42 | 41 | eqcomd 2628 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑌 → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
43 | 42 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐻 ↾ 𝑦) = ((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)) |
44 | 43 | fveq2d 6195 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (Σ^‘(𝐻 ↾ 𝑦)) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
45 | 31, 38, 44 | 3eqtrd 2660 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑀 ↾ 𝑌)‘𝑦) = (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))) |
46 | 45 | mpteq2dva 4744 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑀 ↾ 𝑌)‘𝑦)) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
47 | 29, 46 | eqtrd 2656 | . . 3 ⊢ (𝜑 → (𝑀 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦)))) |
48 | 47 | fveq2d 6195 | . 2 ⊢ (𝜑 → (Σ^‘(𝑀 ↾ 𝑌)) = (Σ^‘(𝑦 ∈ 𝑌 ↦ (Σ^‘((𝐻 ↾ ∪ 𝑌) ↾ 𝑦))))) |
49 | 19, 26, 48 | 3eqtr4d 2666 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 Disj wdisj 4620 ↦ cmpt 4729 ↾ cres 5116 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 +∞cpnf 10071 [,]cicc 12178 Σ^csumge0 40579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-acn 8768 df-ac 8939 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-xadd 11947 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-sumge0 40580 |
This theorem is referenced by: psmeasure 40688 |
Copyright terms: Public domain | W3C validator |