| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp) |
| 2 | | subgntr.h |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝐺) |
| 3 | | cldsubg.2 |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) |
| 4 | 2, 3 | tgptopon 21886 |
. . . . . . . 8
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | | toponuni 20719 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑋 = ∪ 𝐽) |
| 8 | 7 | difeq1d 3727 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = (∪ 𝐽 ∖ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}))) |
| 9 | | simpl2 1065 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 10 | | unisng 4452 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∪ {𝑆}
= 𝑆) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
{𝑆} = 𝑆) |
| 12 | 11 | uneq2d 3767 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ ∪ {𝑆}) = (∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∪ 𝑆)) |
| 13 | | uniun 4456 |
. . . . . . . 8
⊢ ∪ (((𝑋
/ 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (∪ ((𝑋 / 𝑅) ∖ {𝑆}) ∪ ∪ {𝑆}) |
| 14 | | undif1 4043 |
. . . . . . . . . . 11
⊢ (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ((𝑋 / 𝑅) ∪ {𝑆}) |
| 15 | | cldsubg.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝑅 = (𝐺 ~QG 𝑆) |
| 16 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 17 | 3, 15, 16 | eqgid 17646 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)]𝑅 = 𝑆) |
| 18 | 9, 17 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)]𝑅 = 𝑆) |
| 19 | | ovex 6678 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ~QG 𝑆) ∈ V |
| 20 | 15, 19 | eqeltri 2697 |
. . . . . . . . . . . . . . 15
⊢ 𝑅 ∈ V |
| 21 | | tgpgrp 21882 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 22 | 1, 21 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp) |
| 23 | 3, 16 | grpidcl 17450 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (0g‘𝐺) ∈ 𝑋) |
| 25 | | ecelqsg 7802 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ V ∧
(0g‘𝐺)
∈ 𝑋) →
[(0g‘𝐺)]𝑅 ∈ (𝑋 / 𝑅)) |
| 26 | 20, 24, 25 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)]𝑅 ∈ (𝑋 / 𝑅)) |
| 27 | 18, 26 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (𝑋 / 𝑅)) |
| 28 | 27 | snssd 4340 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} ⊆ (𝑋 / 𝑅)) |
| 29 | | ssequn2 3786 |
. . . . . . . . . . . 12
⊢ ({𝑆} ⊆ (𝑋 / 𝑅) ↔ ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅)) |
| 30 | 28, 29 | sylib 208 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅)) |
| 31 | 14, 30 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅)) |
| 32 | 31 | unieqd 4446 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
(((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ∪ (𝑋 / 𝑅)) |
| 33 | 3, 15 | eqger 17644 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑅 Er 𝑋) |
| 34 | 9, 33 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 Er 𝑋) |
| 35 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 ∈ V) |
| 36 | 34, 35 | uniqs2 7809 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
(𝑋 / 𝑅) = 𝑋) |
| 37 | 32, 36 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
(((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋) |
| 38 | 13, 37 | syl5eqr 2670 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ ∪ {𝑆}) = 𝑋) |
| 39 | 12, 38 | eqtr3d 2658 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋) |
| 40 | | difss 3737 |
. . . . . . . . 9
⊢ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅) |
| 41 | 40 | unissi 4461 |
. . . . . . . 8
⊢ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ ∪ (𝑋
/ 𝑅) |
| 42 | 41, 36 | syl5sseq 3653 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋) |
| 43 | | df-ne 2795 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝑆 ↔ ¬ 𝑥 = 𝑆) |
| 44 | 34 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑅 Er 𝑋) |
| 45 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑥 ∈ (𝑋 / 𝑅)) |
| 46 | 27 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑆 ∈ (𝑋 / 𝑅)) |
| 47 | 44, 45, 46 | qsdisj 7824 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 = 𝑆 ∨ (𝑥 ∩ 𝑆) = ∅)) |
| 48 | 47 | ord 392 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → (𝑥 ∩ 𝑆) = ∅)) |
| 49 | | disj2 4024 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ 𝑆) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝑆)) |
| 50 | 48, 49 | syl6ib 241 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → 𝑥 ⊆ (V ∖ 𝑆))) |
| 51 | 43, 50 | syl5bi 232 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 ≠ 𝑆 → 𝑥 ⊆ (V ∖ 𝑆))) |
| 52 | 51 | expimpd 629 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥 ≠ 𝑆) → 𝑥 ⊆ (V ∖ 𝑆))) |
| 53 | | eldifsn 4317 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) ↔ (𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥 ≠ 𝑆)) |
| 54 | | selpw 4165 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 (V ∖
𝑆) ↔ 𝑥 ⊆ (V ∖ 𝑆)) |
| 55 | 52, 53, 54 | 3imtr4g 285 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) → 𝑥 ∈ 𝒫 (V ∖ 𝑆))) |
| 56 | 55 | ssrdv 3609 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆)) |
| 57 | | sspwuni 4611 |
. . . . . . . . 9
⊢ (((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆) ↔ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆)) |
| 58 | 56, 57 | sylib 208 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆)) |
| 59 | | disj2 4024 |
. . . . . . . 8
⊢ ((∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅ ↔ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆)) |
| 60 | 58, 59 | sylibr 224 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) |
| 61 | | uneqdifeq 4057 |
. . . . . . 7
⊢ ((∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ 𝑋 ∧ (∪ ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) → ((∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)) |
| 62 | 42, 60, 61 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)) |
| 63 | 39, 62 | mpbid 222 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆) |
| 64 | 8, 63 | eqtr3d 2658 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ ∪ ((𝑋
/ 𝑅) ∖ {𝑆})) = 𝑆) |
| 65 | | topontop 20718 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 66 | 5, 65 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
| 67 | | simpl3 1066 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ∈ Fin) |
| 68 | | diffi 8192 |
. . . . . . 7
⊢ ((𝑋 / 𝑅) ∈ Fin → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin) |
| 69 | 67, 68 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin) |
| 70 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 71 | 70 | elqs 7799 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋 / 𝑅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = [𝑦]𝑅) |
| 72 | | simpll2 1101 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 73 | | subgrcl 17599 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 75 | 3 | subgss 17595 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 76 | 9, 75 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
| 77 | 76 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
| 78 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 79 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 80 | 3, 15, 79 | eqglact 17645 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋) → [𝑦]𝑅 = ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆)) |
| 81 | 74, 77, 78, 80 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → [𝑦]𝑅 = ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆)) |
| 82 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) |
| 83 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) = (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) |
| 84 | 83, 3, 79, 2 | tgplacthmeo 21907 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) ∈ (𝐽Homeo𝐽)) |
| 85 | 1, 84 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) ∈ (𝐽Homeo𝐽)) |
| 86 | 76, 7 | sseqtrd 3641 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ ∪ 𝐽) |
| 87 | 86 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ⊆ ∪ 𝐽) |
| 88 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 89 | 88 | hmeocld 21570 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))) |
| 90 | 85, 87, 89 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))) |
| 91 | 82, 90 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)) |
| 92 | 81, 91 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → [𝑦]𝑅 ∈ (Clsd‘𝐽)) |
| 93 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ∈ (Clsd‘𝐽) ↔ [𝑦]𝑅 ∈ (Clsd‘𝐽))) |
| 94 | 92, 93 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ (Clsd‘𝐽))) |
| 95 | 94 | rexlimdva 3031 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∃𝑦 ∈ 𝑋 𝑥 = [𝑦]𝑅 → 𝑥 ∈ (Clsd‘𝐽))) |
| 96 | 71, 95 | syl5bi 232 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝑋 / 𝑅) → 𝑥 ∈ (Clsd‘𝐽))) |
| 97 | 96 | ssrdv 3609 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ⊆ (Clsd‘𝐽)) |
| 98 | 97 | ssdifssd 3748 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) |
| 99 | 88 | unicld 20850 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽)) |
| 100 | 66, 69, 98, 99 | syl3anc 1326 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽)) |
| 101 | 88 | cldopn 20835 |
. . . . 5
⊢ (∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ ∪ ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽) |
| 102 | 100, 101 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ ∪ ((𝑋
/ 𝑅) ∖ {𝑆})) ∈ 𝐽) |
| 103 | 64, 102 | eqeltrrd 2702 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ 𝐽) |
| 104 | 103 | ex 450 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ∈ 𝐽)) |
| 105 | 2 | opnsubg 21911 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) |
| 106 | 105 | 3expia 1267 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 ∈ 𝐽 → 𝑆 ∈ (Clsd‘𝐽))) |
| 107 | 106 | 3adant3 1081 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ 𝐽 → 𝑆 ∈ (Clsd‘𝐽))) |
| 108 | 104, 107 | impbid 202 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) |