MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsdisj Structured version   Visualization version   Unicode version

Theorem qsdisj 7824
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsdisj.1  |-  ( ph  ->  R  Er  X )
qsdisj.2  |-  ( ph  ->  B  e.  ( A /. R ) )
qsdisj.3  |-  ( ph  ->  C  e.  ( A /. R ) )
Assertion
Ref Expression
qsdisj  |-  ( ph  ->  ( B  =  C  \/  ( B  i^i  C )  =  (/) ) )

Proof of Theorem qsdisj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdisj.2 . 2  |-  ( ph  ->  B  e.  ( A /. R ) )
2 eqid 2622 . . 3  |-  ( A /. R )  =  ( A /. R
)
3 eqeq1 2626 . . . 4  |-  ( [ x ] R  =  B  ->  ( [
x ] R  =  C  <->  B  =  C
) )
4 ineq1 3807 . . . . 5  |-  ( [ x ] R  =  B  ->  ( [
x ] R  i^i  C )  =  ( B  i^i  C ) )
54eqeq1d 2624 . . . 4  |-  ( [ x ] R  =  B  ->  ( ( [ x ] R  i^i  C )  =  (/)  <->  ( B  i^i  C )  =  (/) ) )
63, 5orbi12d 746 . . 3  |-  ( [ x ] R  =  B  ->  ( ( [ x ] R  =  C  \/  ( [ x ] R  i^i  C )  =  (/) ) 
<->  ( B  =  C  \/  ( B  i^i  C )  =  (/) ) ) )
7 qsdisj.3 . . . 4  |-  ( ph  ->  C  e.  ( A /. R ) )
8 eqeq2 2633 . . . . . 6  |-  ( [ y ] R  =  C  ->  ( [
x ] R  =  [ y ] R  <->  [ x ] R  =  C ) )
9 ineq2 3808 . . . . . . 7  |-  ( [ y ] R  =  C  ->  ( [
x ] R  i^i  [ y ] R )  =  ( [ x ] R  i^i  C ) )
109eqeq1d 2624 . . . . . 6  |-  ( [ y ] R  =  C  ->  ( ( [ x ] R  i^i  [ y ] R
)  =  (/)  <->  ( [
x ] R  i^i  C )  =  (/) ) )
118, 10orbi12d 746 . . . . 5  |-  ( [ y ] R  =  C  ->  ( ( [ x ] R  =  [ y ] R  \/  ( [ x ] R  i^i  [ y ] R )  =  (/) ) 
<->  ( [ x ] R  =  C  \/  ( [ x ] R  i^i  C )  =  (/) ) ) )
12 qsdisj.1 . . . . . . 7  |-  ( ph  ->  R  Er  X )
1312ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  A )  ->  R  Er  X )
14 erdisj 7794 . . . . . 6  |-  ( R  Er  X  ->  ( [ x ] R  =  [ y ] R  \/  ( [ x ] R  i^i  [ y ] R )  =  (/) ) )
1513, 14syl 17 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  A )  ->  ( [ x ] R  =  [ y ] R  \/  ( [ x ] R  i^i  [ y ] R )  =  (/) ) )
162, 11, 15ectocld 7814 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  C  e.  ( A /. R
) )  ->  ( [ x ] R  =  C  \/  ( [ x ] R  i^i  C )  =  (/) ) )
177, 16mpidan 704 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( [ x ] R  =  C  \/  ( [ x ] R  i^i  C )  =  (/) ) )
182, 6, 17ectocld 7814 . 2  |-  ( (
ph  /\  B  e.  ( A /. R ) )  ->  ( B  =  C  \/  ( B  i^i  C )  =  (/) ) )
191, 18mpdan 702 1  |-  ( ph  ->  ( B  =  C  \/  ( B  i^i  C )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   (/)c0 3915    Er wer 7739   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  qsdisj2  7825  uniinqs  7827  cldsubg  21914  erprt  34158
  Copyright terms: Public domain W3C validator