Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqd Structured version   Visualization version   GIF version

Theorem rabeqd 39276
Description: Equality theorem for restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rabeqd (𝜑 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqd
StepHypRef Expression
1 rabeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rabeq 3192 . 2 (𝐴 = 𝐵 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
31, 2syl 17 1 (𝜑 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921
This theorem is referenced by:  issmflem  40936  issmfd  40944  cnfsmf  40949  issmflelem  40953  issmfgtlem  40964  issmfgt  40965  issmfled  40966  issmfgtd  40969  issmfgelem  40977
  Copyright terms: Public domain W3C validator