Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgt Structured version   Visualization version   GIF version

Theorem issmfgt 40965
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgt.s (𝜑𝑆 ∈ SAlg)
issmfgt.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfgt (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfgt
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfgt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 481 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 477 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfgt.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 40942 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 40941 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1843 . . . . . . 7 𝑏𝜑
8 nfv 1843 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1828 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
102, 5restuni4 39304 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) = 𝐷)
1110eqcomd 2628 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 = (𝑆t 𝐷))
1211rabeqd 39276 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
1312adantr 481 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
14 nfv 1843 . . . . . . . . . . 11 𝑦𝜑
15 nfv 1843 . . . . . . . . . . 11 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1614, 15nfan 1828 . . . . . . . . . 10 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
17 nfv 1843 . . . . . . . . . 10 𝑦 𝑏 ∈ ℝ
1816, 17nfan 1828 . . . . . . . . 9 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
19 nfv 1843 . . . . . . . . 9 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
201uniexd 39281 . . . . . . . . . . . . . 14 (𝜑 𝑆 ∈ V)
2120adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
22 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
2321, 22ssexd 4805 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
245, 23syldan 487 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
25 eqid 2622 . . . . . . . . . . 11 (𝑆t 𝐷) = (𝑆t 𝐷)
262, 24, 25subsalsal 40577 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2726adantr 481 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
28 eqid 2622 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
296adantr 481 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
30 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦 (𝑆t 𝐷))
3110adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
3230, 31eleqtrd 2703 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦𝐷)
3329, 32ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ)
3433rexrd 10089 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
3534adantlr 751 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
362, 4issmfle 40954 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))))
373, 36mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
3837simp3d 1075 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
3910rabeqd 39276 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐})
4039eleq1d 2686 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ({𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4140ralbidv 2986 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4238, 41mpbird 247 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4342adantr 481 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
44 simpr 477 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
45 rspa 2930 . . . . . . . . . . 11 ((∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4643, 44, 45syl2anc 693 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4746adantlr 751 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
48 simpr 477 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4918, 19, 27, 28, 35, 47, 48salpreimalegt 40920 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5013, 49eqeltrd 2701 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5150ex 450 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
529, 51ralrimi 2957 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
535, 6, 523jca 1242 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
5453ex 450 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
55 nfv 1843 . . . . . . 7 𝑦 𝐷 𝑆
56 nfv 1843 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
57 nfcv 2764 . . . . . . . 8 𝑦
58 nfrab1 3122 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)}
59 nfcv 2764 . . . . . . . . 9 𝑦(𝑆t 𝐷)
6058, 59nfel 2777 . . . . . . . 8 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6157, 60nfral 2945 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6255, 56, 61nf3an 1831 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
6314, 62nfan 1828 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
64 nfv 1843 . . . . . . 7 𝑏 𝐷 𝑆
65 nfv 1843 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
66 nfra1 2941 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6764, 65, 66nf3an 1831 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
687, 67nfan 1828 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
691adantr 481 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
70 simpr1 1067 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
71 simpr2 1068 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
72 simpr3 1069 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
7363, 68, 69, 4, 70, 71, 72issmfgtlem 40964 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
7473ex 450 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
7554, 74impbid 202 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
76 breq1 4656 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑦)))
7776rabbidv 3189 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦𝐷𝑎 < (𝐹𝑦)})
78 fveq2 6191 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7978breq2d 4665 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑥)))
8079cbvrabv 3199 . . . . . . . 8 {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)}
8180a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8277, 81eqtrd 2656 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8382eleq1d 2686 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8483cbvralv 3171 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
85843anbi3i 1255 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8685a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
8775, 86bitrd 268 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574   cuni 4436   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  *cxr 10073   < clt 10074  cle 10075  t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  issmfgtd  40969  smfpreimagt  40970
  Copyright terms: Public domain W3C validator