Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz3 Structured version   Visualization version   GIF version

Theorem rexanuz3 39275
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rexanuz3.1 𝑗𝜑
rexanuz3.2 𝑍 = (ℤ𝑀)
rexanuz3.3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
rexanuz3.4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
rexanuz3.5 (𝑘 = 𝑗 → (𝜒𝜃))
rexanuz3.6 (𝑘 = 𝑗 → (𝜓𝜏))
Assertion
Ref Expression
rexanuz3 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑍,𝑘   𝜒,𝑗   𝜓,𝑗   𝜏,𝑘   𝜃,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑗)   𝜏(𝑗)   𝑀(𝑘)

Proof of Theorem rexanuz3
StepHypRef Expression
1 rexanuz3.3 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
2 rexanuz3.4 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
31, 2jca 554 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
4 rexanuz3.2 . . . 4 𝑍 = (ℤ𝑀)
54rexanuz2 14089 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
63, 5sylibr 224 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
7 rexanuz3.1 . . 3 𝑗𝜑
84eleq2i 2693 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
98biimpi 206 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
10 eluzelz 11697 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
11 uzid 11702 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
129, 10, 113syl 18 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantr 481 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → 𝑗 ∈ (ℤ𝑗))
14 simpr 477 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
15 rexanuz3.5 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜒𝜃))
16 rexanuz3.6 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜓𝜏))
1715, 16anbi12d 747 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜒𝜓) ↔ (𝜃𝜏)))
1817rspcva 3307 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
1913, 14, 18syl2anc 693 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2019adantll 750 . . . . 5 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2120ex 450 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏)))
2221ex 450 . . 3 (𝜑 → (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏))))
237, 22reximdai 3012 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → ∃𝑗𝑍 (𝜃𝜏)))
246, 23mpd 15 1 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  cfv 5888  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688
This theorem is referenced by:  smflimlem4  40982
  Copyright terms: Public domain W3C validator