Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repr0 Structured version   Visualization version   GIF version

Theorem repr0 30689
Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
repr0 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))

Proof of Theorem repr0
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 0nn0 11307 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
51, 2, 4reprval 30688 . 2 (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
6 fzo0 12492 . . . . . . . . 9 (0..^0) = ∅
76sumeq1i 14428 . . . . . . . 8 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = Σ𝑎 ∈ ∅ (𝑐𝑎)
8 sum0 14452 . . . . . . . 8 Σ𝑎 ∈ ∅ (𝑐𝑎) = 0
97, 8eqtri 2644 . . . . . . 7 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0
109eqeq1i 2627 . . . . . 6 𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀)
1110a1i 11 . . . . 5 (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀))
12 0ex 4790 . . . . . . . . 9 ∅ ∈ V
1312snid 4208 . . . . . . . 8 ∅ ∈ {∅}
14 nnex 11026 . . . . . . . . . . 11 ℕ ∈ V
1514a1i 11 . . . . . . . . . 10 (𝜑 → ℕ ∈ V)
1615, 1ssexd 4805 . . . . . . . . 9 (𝜑𝐴 ∈ V)
17 mapdm0 7872 . . . . . . . . 9 (𝐴 ∈ V → (𝐴𝑚 ∅) = {∅})
1816, 17syl 17 . . . . . . . 8 (𝜑 → (𝐴𝑚 ∅) = {∅})
1913, 18syl5eleqr 2708 . . . . . . 7 (𝜑 → ∅ ∈ (𝐴𝑚 ∅))
206oveq2i 6661 . . . . . . 7 (𝐴𝑚 (0..^0)) = (𝐴𝑚 ∅)
2119, 20syl6eleqr 2712 . . . . . 6 (𝜑 → ∅ ∈ (𝐴𝑚 (0..^0)))
2221adantr 481 . . . . 5 ((𝜑𝑀 = 0) → ∅ ∈ (𝐴𝑚 (0..^0)))
23 simpr 477 . . . . . 6 ((𝜑𝑀 = 0) → 𝑀 = 0)
2423eqcomd 2628 . . . . 5 ((𝜑𝑀 = 0) → 0 = 𝑀)
2520, 18syl5eq 2668 . . . . . . . . 9 (𝜑 → (𝐴𝑚 (0..^0)) = {∅})
2625eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑐 ∈ (𝐴𝑚 (0..^0)) ↔ 𝑐 ∈ {∅}))
2726biimpa 501 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^0))) → 𝑐 ∈ {∅})
28 elsni 4194 . . . . . . 7 (𝑐 ∈ {∅} → 𝑐 = ∅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^0))) → 𝑐 = ∅)
3029ad4ant13 1292 . . . . 5 ((((𝜑𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀) → 𝑐 = ∅)
3111, 22, 24, 30rabeqsnd 29342 . . . 4 ((𝜑𝑀 = 0) → {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = {∅})
3231eqcomd 2628 . . 3 ((𝜑𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
339a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0)
34 simplr 792 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → ¬ 𝑀 = 0)
3534neqned 2801 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → 𝑀 ≠ 0)
3635necomd 2849 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → 0 ≠ 𝑀)
3733, 36eqnetrd 2861 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) ≠ 𝑀)
3837neneqd 2799 . . . . . 6 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴𝑚 (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
3938ralrimiva 2966 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴𝑚 (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
40 rabeq0 3957 . . . . 5 ({𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴𝑚 (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
4139, 40sylibr 224 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅)
4241eqcomd 2628 . . 3 ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
4332, 42ifeqda 4121 . 2 (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
445, 43eqtr4d 2659 1 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  {csn 4177  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465  Σcsu 14416  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-repr 30687
This theorem is referenced by:  breprexp  30711
  Copyright terms: Public domain W3C validator