![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > repr0 | Structured version Visualization version GIF version |
Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
Ref | Expression |
---|---|
repr0 | ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprval.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | 0nn0 11307 | . . . 4 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
5 | 1, 2, 4 | reprval 30688 | . 2 ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
6 | fzo0 12492 | . . . . . . . . 9 ⊢ (0..^0) = ∅ | |
7 | 6 | sumeq1i 14428 | . . . . . . . 8 ⊢ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = Σ𝑎 ∈ ∅ (𝑐‘𝑎) |
8 | sum0 14452 | . . . . . . . 8 ⊢ Σ𝑎 ∈ ∅ (𝑐‘𝑎) = 0 | |
9 | 7, 8 | eqtri 2644 | . . . . . . 7 ⊢ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 0 |
10 | 9 | eqeq1i 2627 | . . . . . 6 ⊢ (Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀 ↔ 0 = 𝑀) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀 ↔ 0 = 𝑀)) |
12 | 0ex 4790 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
13 | 12 | snid 4208 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
14 | nnex 11026 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℕ ∈ V) |
16 | 15, 1 | ssexd 4805 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | mapdm0 7872 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ↑𝑚 ∅) = {∅}) | |
18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ↑𝑚 ∅) = {∅}) |
19 | 13, 18 | syl5eleqr 2708 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑𝑚 ∅)) |
20 | 6 | oveq2i 6661 | . . . . . . 7 ⊢ (𝐴 ↑𝑚 (0..^0)) = (𝐴 ↑𝑚 ∅) |
21 | 19, 20 | syl6eleqr 2712 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑𝑚 (0..^0))) |
22 | 21 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑀 = 0) → ∅ ∈ (𝐴 ↑𝑚 (0..^0))) |
23 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 = 0) → 𝑀 = 0) | |
24 | 23 | eqcomd 2628 | . . . . 5 ⊢ ((𝜑 ∧ 𝑀 = 0) → 0 = 𝑀) |
25 | 20, 18 | syl5eq 2668 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑𝑚 (0..^0)) = {∅}) |
26 | 25 | eleq2d 2687 | . . . . . . . 8 ⊢ (𝜑 → (𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ↔ 𝑐 ∈ {∅})) |
27 | 26 | biimpa 501 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → 𝑐 ∈ {∅}) |
28 | elsni 4194 | . . . . . . 7 ⊢ (𝑐 ∈ {∅} → 𝑐 = ∅) | |
29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → 𝑐 = ∅) |
30 | 29 | ad4ant13 1292 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) → 𝑐 = ∅) |
31 | 11, 22, 24, 30 | rabeqsnd 29342 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 = 0) → {𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = {∅}) |
32 | 31 | eqcomd 2628 | . . 3 ⊢ ((𝜑 ∧ 𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
33 | 9 | a1i 11 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 0) |
34 | simplr 792 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → ¬ 𝑀 = 0) | |
35 | 34 | neqned 2801 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → 𝑀 ≠ 0) |
36 | 35 | necomd 2849 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → 0 ≠ 𝑀) |
37 | 33, 36 | eqnetrd 2861 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) ≠ 𝑀) |
38 | 37 | neneqd 2799 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑𝑚 (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) |
39 | 38 | ralrimiva 2966 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) |
40 | rabeq0 3957 | . . . . 5 ⊢ ({𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) | |
41 | 39, 40 | sylibr 224 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = ∅) |
42 | 41 | eqcomd 2628 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
43 | 32, 42 | ifeqda 4121 | . 2 ⊢ (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴 ↑𝑚 (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
44 | 5, 43 | eqtr4d 2659 | 1 ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 ifcif 4086 {csn 4177 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 0cc0 9936 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ..^cfzo 12465 Σcsu 14416 reprcrepr 30686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-repr 30687 |
This theorem is referenced by: breprexp 30711 |
Copyright terms: Public domain | W3C validator |