![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssab | Structured version Visualization version GIF version |
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabssab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | simpr 477 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) | |
3 | 2 | ss2abi 3674 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝜑} |
4 | 1, 3 | eqsstri 3635 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ∈ wcel 1990 {cab 2608 {crab 2916 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 |
This theorem is referenced by: epse 5097 riotasbc 6626 toponsspwpw 20726 dmtopon 20727 aannenlem2 24084 aalioulem2 24088 ballotlemfmpn 30556 rencldnfilem 37384 rababg 37879 |
Copyright terms: Public domain | W3C validator |