Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfmpn Structured version   Visualization version   GIF version

Theorem ballotlemfmpn 30556
Description: (𝐹𝐶) finishes counting at (𝑀𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfmpn (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfmpn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 nnaddcl 11042 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
81, 2, 7mp2an 708 . . . . 5 (𝑀 + 𝑁) ∈ ℕ
98nnzi 11401 . . . 4 (𝑀 + 𝑁) ∈ ℤ
109a1i 11 . . 3 (𝐶𝑂 → (𝑀 + 𝑁) ∈ ℤ)
111, 2, 3, 4, 5, 6, 10ballotlemfval 30551 . 2 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))))
12 ssrab2 3687 . . . . . . . . 9 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
133, 12eqsstri 3635 . . . . . . . 8 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
1413sseli 3599 . . . . . . 7 (𝐶𝑂𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)))
1514elpwid 4170 . . . . . 6 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
16 sseqin2 3817 . . . . . 6 (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1715, 16sylib 208 . . . . 5 (𝐶𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1817fveq2d 6195 . . . 4 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (#‘𝐶))
19 rabssab 3690 . . . . . . 7 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (#‘𝑐) = 𝑀}
2019sseli 3599 . . . . . 6 (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀})
2120, 3eleq2s 2719 . . . . 5 (𝐶𝑂𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀})
22 fveq2 6191 . . . . . . 7 (𝑏 = 𝐶 → (#‘𝑏) = (#‘𝐶))
2322eqeq1d 2624 . . . . . 6 (𝑏 = 𝐶 → ((#‘𝑏) = 𝑀 ↔ (#‘𝐶) = 𝑀))
24 fveq2 6191 . . . . . . . 8 (𝑐 = 𝑏 → (#‘𝑐) = (#‘𝑏))
2524eqeq1d 2624 . . . . . . 7 (𝑐 = 𝑏 → ((#‘𝑐) = 𝑀 ↔ (#‘𝑏) = 𝑀))
2625cbvabv 2747 . . . . . 6 {𝑐 ∣ (#‘𝑐) = 𝑀} = {𝑏 ∣ (#‘𝑏) = 𝑀}
2723, 26elab2g 3353 . . . . 5 (𝐶𝑂 → (𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀} ↔ (#‘𝐶) = 𝑀))
2821, 27mpbid 222 . . . 4 (𝐶𝑂 → (#‘𝐶) = 𝑀)
2918, 28eqtrd 2656 . . 3 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀)
30 fzfi 12771 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
31 hashssdif 13200 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)))
3230, 15, 31sylancr 695 . . . 4 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)))
338nnnn0i 11300 . . . . . 6 (𝑀 + 𝑁) ∈ ℕ0
34 hashfz1 13134 . . . . . 6 ((𝑀 + 𝑁) ∈ ℕ0 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3533, 34mp1i 13 . . . . 5 (𝐶𝑂 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3635, 28oveq12d 6668 . . . 4 (𝐶𝑂 → ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)) = ((𝑀 + 𝑁) − 𝑀))
371nncni 11030 . . . . . 6 𝑀 ∈ ℂ
382nncni 11030 . . . . . 6 𝑁 ∈ ℂ
39 pncan2 10288 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4037, 38, 39mp2an 708 . . . . 5 ((𝑀 + 𝑁) − 𝑀) = 𝑁
4140a1i 11 . . . 4 (𝐶𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4232, 36, 413eqtrd 2660 . . 3 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁)
4329, 42oveq12d 6668 . 2 (𝐶𝑂 → ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀𝑁))
4411, 43eqtrd 2656 1 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937   + caddc 9939  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlem5  30561
  Copyright terms: Public domain W3C validator