| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1063 |
. . . . . . . . . 10
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ ℂ) |
| 2 | | eldifi 3732 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ℎ ∈ (Poly‘ℤ)) |
| 3 | 2 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ℎ ∈ (Poly‘ℤ)) |
| 4 | 3 | 3adant2 1080 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ℎ ∈ (Poly‘ℤ)) |
| 5 | | eldifsni 4320 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ℎ ≠ 0𝑝) |
| 6 | 5 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ℎ ≠ 0𝑝) |
| 7 | | 0nn0 11307 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℕ0 |
| 8 | | dgrcl 23989 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ ∈ (Poly‘ℤ)
→ (deg‘ℎ) ∈
ℕ0) |
| 9 | 3, 8 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘ℎ) ∈
ℕ0) |
| 10 | | prssi 4353 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℕ0 ∧ (deg‘ℎ) ∈ ℕ0) → {0,
(deg‘ℎ)} ⊆
ℕ0) |
| 11 | 7, 9, 10 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {0, (deg‘ℎ)} ⊆
ℕ0) |
| 12 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ⊆
ℕ0 |
| 13 | 12 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ⊆
ℕ0) |
| 14 | 11, 13 | unssd 3789 |
. . . . . . . . . . . . . . . 16
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆
ℕ0) |
| 15 | | nn0ssre 11296 |
. . . . . . . . . . . . . . . . 17
⊢
ℕ0 ⊆ ℝ |
| 16 | | ressxr 10083 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
⊆ ℝ* |
| 17 | 15, 16 | sstri 3612 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ⊆ ℝ* |
| 18 | 14, 17 | syl6ss 3615 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆
ℝ*) |
| 19 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢
(deg‘ℎ) ∈
V |
| 20 | 19 | prid2 4298 |
. . . . . . . . . . . . . . . 16
⊢
(deg‘ℎ) ∈
{0, (deg‘ℎ)} |
| 21 | | elun1 3780 |
. . . . . . . . . . . . . . . 16
⊢
((deg‘ℎ) ∈
{0, (deg‘ℎ)} →
(deg‘ℎ) ∈ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(deg‘ℎ) ∈
({0, (deg‘ℎ)} ∪
{𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}) |
| 23 | | supxrub 12154 |
. . . . . . . . . . . . . . 15
⊢ ((({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆ ℝ* ∧
(deg‘ℎ) ∈ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) → (deg‘ℎ) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)) |
| 24 | 18, 22, 23 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘ℎ) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)) |
| 25 | 18 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆
ℝ*) |
| 26 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((coeff‘ℎ)‘𝑒) = 0 → (abs‘((coeff‘ℎ)‘𝑒)) = (abs‘0)) |
| 27 | | abs0 14025 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(abs‘0) = 0 |
| 28 | 26, 27 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((coeff‘ℎ)‘𝑒) = 0 → (abs‘((coeff‘ℎ)‘𝑒)) = 0) |
| 29 | | c0ex 10034 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
V |
| 30 | 29 | prid1 4297 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
{0, (deg‘ℎ)} |
| 31 | | elun1 3780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
{0, (deg‘ℎ)} → 0
∈ ({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))})) |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
({0, (deg‘ℎ)} ∪
{𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}) |
| 33 | 28, 32 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . . 18
⊢
(((coeff‘ℎ)‘𝑒) = 0 → (abs‘((coeff‘ℎ)‘𝑒)) ∈ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 34 | 33 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) = 0) →
(abs‘((coeff‘ℎ)‘𝑒)) ∈ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 35 | | 0z 11388 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℤ |
| 36 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(coeff‘ℎ) =
(coeff‘ℎ) |
| 37 | 36 | coef2 23987 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ ∈ (Poly‘ℤ)
∧ 0 ∈ ℤ) → (coeff‘ℎ):ℕ0⟶ℤ) |
| 38 | 3, 35, 37 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (coeff‘ℎ):ℕ0⟶ℤ) |
| 39 | 38 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) →
((coeff‘ℎ)‘𝑒) ∈
ℤ) |
| 40 | | nn0abscl 14052 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((coeff‘ℎ)‘𝑒) ∈ ℤ →
(abs‘((coeff‘ℎ)‘𝑒)) ∈
ℕ0) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) →
(abs‘((coeff‘ℎ)‘𝑒)) ∈
ℕ0) |
| 42 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) →
(abs‘((coeff‘ℎ)‘𝑒)) ∈
ℕ0) |
| 43 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) → 𝑒 ∈
ℕ0) |
| 44 | 9 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) →
(deg‘ℎ) ∈
ℕ0) |
| 45 | 3 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) → ℎ ∈
(Poly‘ℤ)) |
| 46 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) →
((coeff‘ℎ)‘𝑒) ≠ 0) |
| 47 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(deg‘ℎ) =
(deg‘ℎ) |
| 48 | 36, 47 | dgrub 23990 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ ∈ (Poly‘ℤ)
∧ 𝑒 ∈
ℕ0 ∧ ((coeff‘ℎ)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘ℎ)) |
| 49 | 45, 43, 46, 48 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘ℎ)) |
| 50 | | elfz2nn0 12431 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 ∈ (0...(deg‘ℎ)) ↔ (𝑒 ∈ ℕ0 ∧
(deg‘ℎ) ∈
ℕ0 ∧ 𝑒
≤ (deg‘ℎ))) |
| 51 | 43, 44, 49, 50 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) → 𝑒 ∈ (0...(deg‘ℎ))) |
| 52 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑒)) |
| 53 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑒 → ((coeff‘ℎ)‘𝑖) = ((coeff‘ℎ)‘𝑒)) |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑒 → (abs‘((coeff‘ℎ)‘𝑖)) = (abs‘((coeff‘ℎ)‘𝑒))) |
| 55 | 54 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑒 → ((abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑖)) ↔ (abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑒)))) |
| 56 | 55 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑒 ∈ (0...(deg‘ℎ)) ∧
(abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑒))) → ∃𝑖 ∈ (0...(deg‘ℎ))(abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑖))) |
| 57 | 51, 52, 56 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) → ∃𝑖 ∈ (0...(deg‘ℎ))(abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑖))) |
| 58 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 =
(abs‘((coeff‘ℎ)‘𝑒)) → (𝑔 = (abs‘((coeff‘ℎ)‘𝑖)) ↔ (abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑖)))) |
| 59 | 58 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 =
(abs‘((coeff‘ℎ)‘𝑒)) → (∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖)) ↔ ∃𝑖 ∈ (0...(deg‘ℎ))(abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑖)))) |
| 60 | 59 | elrab 3363 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs‘((coeff‘ℎ)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ↔ ((abs‘((coeff‘ℎ)‘𝑒)) ∈ ℕ0 ∧
∃𝑖 ∈
(0...(deg‘ℎ))(abs‘((coeff‘ℎ)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑖)))) |
| 61 | 42, 57, 60 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) →
(abs‘((coeff‘ℎ)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) |
| 62 | | elun2 3781 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘((coeff‘ℎ)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} → (abs‘((coeff‘ℎ)‘𝑒)) ∈ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧
((coeff‘ℎ)‘𝑒) ≠ 0) →
(abs‘((coeff‘ℎ)‘𝑒)) ∈ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 64 | 34, 63 | pm2.61dane 2881 |
. . . . . . . . . . . . . . . 16
⊢ (((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) →
(abs‘((coeff‘ℎ)‘𝑒)) ∈ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 65 | | supxrub 12154 |
. . . . . . . . . . . . . . . 16
⊢ ((({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆ ℝ* ∧
(abs‘((coeff‘ℎ)‘𝑒)) ∈ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) → (abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)) |
| 66 | 25, 64, 65 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) →
(abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)) |
| 67 | 66 | ralrimiva 2966 |
. . . . . . . . . . . . . 14
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∀𝑒 ∈ ℕ0
(abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)) |
| 68 | 6, 24, 67 | 3jca 1242 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (ℎ ≠ 0𝑝 ∧
(deg‘ℎ) ≤ sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 69 | 68 | 3adant2 1080 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → (ℎ ≠ 0𝑝 ∧
(deg‘ℎ) ≤ sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 70 | | neeq1 2856 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = ℎ → (𝑑 ≠ 0𝑝 ↔ ℎ ≠
0𝑝)) |
| 71 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = ℎ → (deg‘𝑑) = (deg‘ℎ)) |
| 72 | 71 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = ℎ → ((deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ↔
(deg‘ℎ) ≤ sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 73 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = ℎ → (coeff‘𝑑) = (coeff‘ℎ)) |
| 74 | 73 | fveq1d 6193 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = ℎ → ((coeff‘𝑑)‘𝑒) = ((coeff‘ℎ)‘𝑒)) |
| 75 | 74 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = ℎ → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘ℎ)‘𝑒))) |
| 76 | 75 | breq1d 4663 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = ℎ → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ↔
(abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 77 | 76 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = ℎ → (∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ↔
∀𝑒 ∈
ℕ0 (abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 78 | 70, 72, 77 | 3anbi123d 1399 |
. . . . . . . . . . . . 13
⊢ (𝑑 = ℎ → ((𝑑 ≠ 0𝑝 ∧
(deg‘𝑑) ≤ sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < )) ↔
(ℎ ≠
0𝑝 ∧ (deg‘ℎ) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)))) |
| 79 | 78 | elrab 3363 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} ↔
(ℎ ∈
(Poly‘ℤ) ∧ (ℎ ≠ 0𝑝 ∧
(deg‘ℎ) ≤ sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘ℎ)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)))) |
| 80 | 4, 69, 79 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ℎ ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))}) |
| 81 | | simp2 1062 |
. . . . . . . . . . 11
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → (ℎ‘𝑔) = 0) |
| 82 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢ (𝑐 = ℎ → (𝑐‘𝑔) = (ℎ‘𝑔)) |
| 83 | 82 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑐 = ℎ → ((𝑐‘𝑔) = 0 ↔ (ℎ‘𝑔) = 0)) |
| 84 | 83 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((ℎ ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} ∧
(ℎ‘𝑔) = 0) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑔) = 0) |
| 85 | 80, 81, 84 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑔) = 0) |
| 86 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑔 → (𝑐‘𝑏) = (𝑐‘𝑔)) |
| 87 | 86 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑔 → ((𝑐‘𝑏) = 0 ↔ (𝑐‘𝑔) = 0)) |
| 88 | 87 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑔) = 0)) |
| 89 | 88 | elrab 3363 |
. . . . . . . . . 10
⊢ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑔) = 0)) |
| 90 | 1, 85, 89 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0}) |
| 91 | | prfi 8235 |
. . . . . . . . . . . . . . 15
⊢ {0,
(deg‘ℎ)} ∈
Fin |
| 92 | | fzfi 12771 |
. . . . . . . . . . . . . . . . 17
⊢
(0...(deg‘ℎ))
∈ Fin |
| 93 | | abrexfi 8266 |
. . . . . . . . . . . . . . . . 17
⊢
((0...(deg‘ℎ))
∈ Fin → {𝑔
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ∈ Fin) |
| 94 | 92, 93 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))} ∈ Fin |
| 95 | | rabssab 3690 |
. . . . . . . . . . . . . . . 16
⊢ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))} |
| 96 | | ssfi 8180 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑔 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}) → {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ∈ Fin) |
| 97 | 94, 95, 96 | mp2an 708 |
. . . . . . . . . . . . . . 15
⊢ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))} ∈ Fin |
| 98 | | unfi 8227 |
. . . . . . . . . . . . . . 15
⊢ (({0,
(deg‘ℎ)} ∈ Fin
∧ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))} ∈ Fin) → ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ∈ Fin) |
| 99 | 91, 97, 98 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ∈ Fin |
| 100 | 99 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ∈ Fin) |
| 101 | 22 | ne0ii 3923 |
. . . . . . . . . . . . . 14
⊢ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ≠ ∅ |
| 102 | 101 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ≠ ∅) |
| 103 | | xrltso 11974 |
. . . . . . . . . . . . . 14
⊢ < Or
ℝ* |
| 104 | | fisupcl 8375 |
. . . . . . . . . . . . . 14
⊢ (( <
Or ℝ* ∧ (({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆ ℝ*)) →
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∈ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 105 | 103, 104 | mpan 706 |
. . . . . . . . . . . . 13
⊢ ((({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}) ⊆ ℝ*) →
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∈ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 106 | 100, 102,
18, 105 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∈ ({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))})) |
| 107 | 14, 106 | sseldd 3604 |
. . . . . . . . . . 11
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∈
ℕ0) |
| 108 | 107 | 3adant2 1080 |
. . . . . . . . . 10
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∈
ℕ0) |
| 109 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0}) |
| 110 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 111 | | breq2 4657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 112 | 111 | ralbidv 2986 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
(∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))) |
| 113 | 110, 112 | 3anbi23d 1402 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
((𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧
(deg‘𝑑) ≤ sup(({0,
(deg‘ℎ)} ∪ {𝑔 ∈ ℕ0
∣ ∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
)))) |
| 114 | 113 | rabbidv 3189 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
{𝑑 ∈
(Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧
(deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, <
))}) |
| 115 | 114 | rexeqdv 3145 |
. . . . . . . . . . . . 13
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
(∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0)) |
| 116 | 115 | rabbidv 3189 |
. . . . . . . . . . . 12
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
{𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0}) |
| 117 | 116 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑎 = sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) →
({𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0})) |
| 118 | 117 | rspcev 3309 |
. . . . . . . . . 10
⊢
((sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∈
ℕ0 ∧ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0}) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| 119 | 108, 109,
118 | syl2anc 693 |
. . . . . . . . 9
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑎 ∈ ℕ0
{𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| 120 | | cnex 10017 |
. . . . . . . . . . 11
⊢ ℂ
∈ V |
| 121 | 120 | rabex 4813 |
. . . . . . . . . 10
⊢ {𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} ∈ V |
| 122 | | eleq2 2690 |
. . . . . . . . . . 11
⊢ (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} → (𝑔 ∈ 𝑓 ↔ 𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0})) |
| 123 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} → (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 124 | 123 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} → (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ↔ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 125 | 122, 124 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} → ((𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ↔ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}))) |
| 126 | 121, 125 | spcev 3300 |
. . . . . . . . 9
⊢ ((𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
sup(({0, (deg‘ℎ)}
∪ {𝑔 ∈
ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘ℎ))𝑔 = (abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ) ∧
∀𝑒 ∈
ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘ℎ)} ∪ {𝑔 ∈ ℕ0 ∣
∃𝑖 ∈
(0...(deg‘ℎ))𝑔 =
(abs‘((coeff‘ℎ)‘𝑖))}), ℝ*, < ))} (𝑐‘𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) → ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 127 | 90, 119, 126 | syl2anc 693 |
. . . . . . . 8
⊢ ((ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (ℎ‘𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 128 | 127 | 3exp 1264 |
. . . . . . 7
⊢ (ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ((ℎ‘𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})))) |
| 129 | 128 | rexlimiv 3027 |
. . . . . 6
⊢
(∃ℎ ∈
((Poly‘ℤ) ∖ {0𝑝})(ℎ‘𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}))) |
| 130 | 129 | impcom 446 |
. . . . 5
⊢ ((𝑔 ∈ ℂ ∧
∃ℎ ∈
((Poly‘ℤ) ∖ {0𝑝})(ℎ‘𝑔) = 0) → ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 131 | | eleq2 2690 |
. . . . . . . . 9
⊢ (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} → (𝑔 ∈ 𝑓 ↔ 𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 132 | 87 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑔) = 0)) |
| 133 | 132 | elrab 3363 |
. . . . . . . . . 10
⊢ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑔) = 0)) |
| 134 | | simp1 1061 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ≠ 0𝑝 ∧
(deg‘ℎ) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘ℎ)‘𝑒)) ≤ 𝑎) → ℎ ≠ 0𝑝) |
| 135 | 134 | anim2i 593 |
. . . . . . . . . . . . . 14
⊢ ((ℎ ∈ (Poly‘ℤ)
∧ (ℎ ≠
0𝑝 ∧ (deg‘ℎ) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘ℎ)‘𝑒)) ≤ 𝑎)) → (ℎ ∈ (Poly‘ℤ) ∧ ℎ ≠
0𝑝)) |
| 136 | 71 | breq1d 4663 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = ℎ → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘ℎ) ≤ 𝑎)) |
| 137 | 75 | breq1d 4663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = ℎ → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘ℎ)‘𝑒)) ≤ 𝑎)) |
| 138 | 137 | ralbidv 2986 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = ℎ → (∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘ℎ)‘𝑒)) ≤ 𝑎)) |
| 139 | 70, 136, 138 | 3anbi123d 1399 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = ℎ → ((𝑑 ≠ 0𝑝 ∧
(deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (ℎ ≠ 0𝑝 ∧
(deg‘ℎ) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘ℎ)‘𝑒)) ≤ 𝑎))) |
| 140 | 139 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ↔ (ℎ ∈ (Poly‘ℤ) ∧ (ℎ ≠ 0𝑝 ∧
(deg‘ℎ) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘ℎ)‘𝑒)) ≤ 𝑎))) |
| 141 | | eldifsn 4317 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝}) ↔ (ℎ ∈ (Poly‘ℤ) ∧ ℎ ≠
0𝑝)) |
| 142 | 135, 140,
141 | 3imtr4i 281 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} → ℎ ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
| 143 | 142 | ssriv 3607 |
. . . . . . . . . . . 12
⊢ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖
{0𝑝}) |
| 144 | | ssrexv 3667 |
. . . . . . . . . . . . 13
⊢ ({𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖
{0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑔) = 0 → ∃𝑐 ∈ ((Poly‘ℤ) ∖
{0𝑝})(𝑐‘𝑔) = 0)) |
| 145 | 83 | cbvrexv 3172 |
. . . . . . . . . . . . 13
⊢
(∃𝑐 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑐‘𝑔) = 0 ↔ ∃ℎ ∈ ((Poly‘ℤ) ∖
{0𝑝})(ℎ‘𝑔) = 0) |
| 146 | 144, 145 | syl6ib 241 |
. . . . . . . . . . . 12
⊢ ({𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖
{0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑔) = 0 → ∃ℎ ∈ ((Poly‘ℤ) ∖
{0𝑝})(ℎ‘𝑔) = 0)) |
| 147 | 143, 146 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∃𝑐 ∈
{𝑑 ∈
(Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧
(deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑔) = 0 → ∃ℎ ∈ ((Poly‘ℤ) ∖
{0𝑝})(ℎ‘𝑔) = 0) |
| 148 | 147 | anim2i 593 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ ℂ ∧
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑔) = 0) → (𝑔 ∈ ℂ ∧ ∃ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝})(ℎ‘𝑔) = 0)) |
| 149 | 133, 148 | sylbi 207 |
. . . . . . . . 9
⊢ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} → (𝑔 ∈ ℂ ∧ ∃ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝})(ℎ‘𝑔) = 0)) |
| 150 | 131, 149 | syl6bi 243 |
. . . . . . . 8
⊢ (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} → (𝑔 ∈ 𝑓 → (𝑔 ∈ ℂ ∧ ∃ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝})(ℎ‘𝑔) = 0))) |
| 151 | 150 | rexlimivw 3029 |
. . . . . . 7
⊢
(∃𝑎 ∈
ℕ0 𝑓 =
{𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} → (𝑔 ∈ 𝑓 → (𝑔 ∈ ℂ ∧ ∃ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝})(ℎ‘𝑔) = 0))) |
| 152 | 151 | impcom 446 |
. . . . . 6
⊢ ((𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝})(ℎ‘𝑔) = 0)) |
| 153 | 152 | exlimiv 1858 |
. . . . 5
⊢
(∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ℎ ∈ ((Poly‘ℤ)
∖ {0𝑝})(ℎ‘𝑔) = 0)) |
| 154 | 130, 153 | impbii 199 |
. . . 4
⊢ ((𝑔 ∈ ℂ ∧
∃ℎ ∈
((Poly‘ℤ) ∖ {0𝑝})(ℎ‘𝑔) = 0) ↔ ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 155 | | elaa 24071 |
. . . 4
⊢ (𝑔 ∈ 𝔸 ↔ (𝑔 ∈ ℂ ∧
∃ℎ ∈
((Poly‘ℤ) ∖ {0𝑝})(ℎ‘𝑔) = 0)) |
| 156 | | eluniab 4447 |
. . . 4
⊢ (𝑔 ∈ ∪ {𝑓
∣ ∃𝑎 ∈
ℕ0 𝑓 =
{𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}} ↔ ∃𝑓(𝑔 ∈ 𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0})) |
| 157 | 154, 155,
156 | 3bitr4i 292 |
. . 3
⊢ (𝑔 ∈ 𝔸 ↔ 𝑔 ∈ ∪ {𝑓
∣ ∃𝑎 ∈
ℕ0 𝑓 =
{𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}}) |
| 158 | 157 | eqriv 2619 |
. 2
⊢ 𝔸
= ∪ {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}} |
| 159 | | aannenlem.a |
. . . 4
⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣
∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ)
∣ (𝑑 ≠
0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| 160 | 159 | rnmpt 5371 |
. . 3
⊢ ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}} |
| 161 | 160 | unieqi 4445 |
. 2
⊢ ∪ ran 𝐻 = ∪ {𝑓 ∣ ∃𝑎 ∈ ℕ0
𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝
∧ (deg‘𝑑) ≤
𝑎 ∧ ∀𝑒 ∈ ℕ0
(abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}} |
| 162 | 158, 161 | eqtr4i 2647 |
1
⊢ 𝔸
= ∪ ran 𝐻 |