MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifeq Structured version   Visualization version   GIF version

Theorem raldifeq 4059
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.)
Hypotheses
Ref Expression
raldifeq.1 (𝜑𝐴𝐵)
raldifeq.2 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
Assertion
Ref Expression
raldifeq (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raldifeq
StepHypRef Expression
1 raldifeq.2 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
21biantrud 528 . . 3 (𝜑 → (∀𝑥𝐴 𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓)))
3 ralunb 3794 . . 3 (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓))
42, 3syl6bbr 278 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓))
5 raldifeq.1 . . . 4 (𝜑𝐴𝐵)
6 undif 4049 . . . 4 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
75, 6sylib 208 . . 3 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
87raleqdv 3144 . 2 (𝜑 → (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ ∀𝑥𝐵 𝜓))
94, 8bitrd 268 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wral 2912  cdif 3571  cun 3572  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  cantnfrescl  8573  rrxmet  23191  ntrneiel2  38384  ntrneik4w  38398
  Copyright terms: Public domain W3C validator