Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik4w Structured version   Visualization version   GIF version

Theorem ntrneik4w 38398
Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik4w (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik4w
StepHypRef Expression
1 dfcleq 2616 . . . . 5 ((𝐼𝑠) = (𝐼‘(𝐼𝑠)) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2 eqcom 2629 . . . . 5 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ (𝐼𝑠) = (𝐼‘(𝐼𝑠)))
3 ralv 3219 . . . . 5 (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
41, 2, 33bitr4i 292 . . . 4 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
5 ssv 3625 . . . . . . 7 𝐵 ⊆ V
65a1i 11 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ⊆ V)
7 vex 3203 . . . . . . . . 9 𝑥 ∈ V
8 eldif 3584 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
97, 8mpbiran 953 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
10 ntrnei.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
11 ntrnei.f . . . . . . . . . . . . . . . 16 𝐹 = (𝒫 𝐵𝑂𝐵)
12 ntrnei.r . . . . . . . . . . . . . . . 16 (𝜑𝐼𝐹𝑁)
1310, 11, 12ntrneiiex 38374 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
14 elmapi 7879 . . . . . . . . . . . . . . 15 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
1615ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
1716elpwid 4170 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1817sseld 3602 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
1918con3dimp 457 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼𝑠))
2015adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2120, 16ffvelrnd 6360 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ∈ 𝒫 𝐵)
2221elpwid 4170 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ⊆ 𝐵)
2322sseld 3602 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) → 𝑥𝐵))
2423con3dimp 457 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼‘(𝐼𝑠)))
2519, 242falsed 366 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2625ex 450 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
279, 26syl5bi 232 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (V ∖ 𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
2827ralrimiv 2965 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ∀𝑥 ∈ (V ∖ 𝐵)(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
296, 28raldifeq 4059 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
3012adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
3130adantr 481 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
32 simpr 477 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
33 simplr 792 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3410, 11, 31, 32, 33ntrneiel 38379 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
3516adantr 481 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
3610, 11, 31, 32, 35ntrneiel 38379 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
3734, 36bibi12d 335 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3837ralbidva 2985 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3929, 38bitr3d 270 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
404, 39syl5bb 272 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
4140ralbidva 2985 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
42 ralcom 3098 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
4341, 42syl6bb 276 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  ntrneik4  38399
  Copyright terms: Public domain W3C validator