![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif | Structured version Visualization version GIF version |
Description: Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
undif | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 3783 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | undif2 4044 | . . 3 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
3 | 2 | eqeq1i 2627 | . 2 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
4 | 1, 3 | bitr4i 267 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 |
This theorem is referenced by: raldifeq 4059 difsnid 4341 fveqf1o 6557 ralxpmap 7907 undifixp 7944 dfdom2 7981 sbthlem5 8074 sbthlem6 8075 domunsn 8110 fodomr 8111 mapdom2 8131 limensuci 8136 findcard2 8200 unfi 8227 marypha1lem 8339 brwdom2 8478 infdifsn 8554 ackbij1lem12 9053 ackbij1lem18 9059 ssfin4 9132 fin23lem28 9162 fin23lem30 9164 fin1a2lem13 9234 canthp1lem1 9474 xrsupss 12139 xrinfmss 12140 hashssdif 13200 hashfun 13224 hashf1lem2 13240 fsumless 14528 incexclem 14568 incexc 14569 fprodsplit1f 14721 pwssplit1 19059 frlmsslss2 20114 mdetdiaglem 20404 mdetrlin 20408 mdetrsca 20409 mdetralt 20414 smadiadet 20476 isclo 20891 cmpcld 21205 rrxcph 23180 rrxdstprj1 23192 uniiccmbl 23358 itgss3 23581 dchreq 24983 axlowdimlem7 25828 axlowdimlem10 25831 padct 29497 resf1o 29505 fprodeq02 29569 locfinref 29908 indval2 30076 esummono 30116 gsumesum 30121 sigaclfu2 30184 measxun2 30273 measvuni 30277 measssd 30278 pmeasmono 30386 eulerpartlemt 30433 tgoldbachgtde 30738 noextendseq 31820 poimirlem9 33418 poimirlem15 33424 poimirlem25 33434 diophrw 37322 eldioph2lem1 37323 eldioph2lem2 37324 kelac1 37633 fsumsplit1 39804 ioccncflimc 40098 icocncflimc 40102 dirkercncflem2 40321 dirkercncflem3 40322 sge0ss 40629 meassle 40680 meadif 40696 meaiininclem 40700 isomenndlem 40744 hspmbllem1 40840 hspmbllem2 40841 ovolval4lem1 40863 fsumsplitsndif 41343 |
Copyright terms: Public domain | W3C validator |