Proof of Theorem cantnfrescl
| Step | Hyp | Ref
| Expression |
| 1 | | cantnfrescl.b |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐷) |
| 2 | | cantnfrescl.x |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) |
| 3 | | cantnfrescl.a |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → ∅ ∈ 𝐴) |
| 5 | 2, 4 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 ∈ 𝐴) |
| 6 | 5 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ (𝐷 ∖ 𝐵)𝑋 ∈ 𝐴) |
| 7 | 1, 6 | raldifeq 4059 |
. . . 4
⊢ (𝜑 → (∀𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ∀𝑛 ∈ 𝐷 𝑋 ∈ 𝐴)) |
| 8 | | eqid 2622 |
. . . . 5
⊢ (𝑛 ∈ 𝐵 ↦ 𝑋) = (𝑛 ∈ 𝐵 ↦ 𝑋) |
| 9 | 8 | fmpt 6381 |
. . . 4
⊢
(∀𝑛 ∈
𝐵 𝑋 ∈ 𝐴 ↔ (𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴) |
| 10 | | eqid 2622 |
. . . . 5
⊢ (𝑛 ∈ 𝐷 ↦ 𝑋) = (𝑛 ∈ 𝐷 ↦ 𝑋) |
| 11 | 10 | fmpt 6381 |
. . . 4
⊢
(∀𝑛 ∈
𝐷 𝑋 ∈ 𝐴 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴) |
| 12 | 7, 9, 11 | 3bitr3g 302 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴)) |
| 13 | | cantnfs.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ On) |
| 14 | | mptexg 6484 |
. . . . . 6
⊢ (𝐵 ∈ On → (𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V) |
| 15 | 13, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V) |
| 16 | | funmpt 5926 |
. . . . . 6
⊢ Fun
(𝑛 ∈ 𝐵 ↦ 𝑋) |
| 17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) |
| 18 | | cantnfrescl.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ On) |
| 19 | | mptexg 6484 |
. . . . . . 7
⊢ (𝐷 ∈ On → (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V) |
| 21 | | funmpt 5926 |
. . . . . 6
⊢ Fun
(𝑛 ∈ 𝐷 ↦ 𝑋) |
| 22 | 20, 21 | jctir 561 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋))) |
| 23 | 15, 17, 22 | jca31 557 |
. . . 4
⊢ (𝜑 → (((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) ∧ ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋)))) |
| 24 | 18, 1, 2 | extmptsuppeq 7319 |
. . . 4
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) |
| 25 | | suppeqfsuppbi 8289 |
. . . 4
⊢ ((((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) ∧ ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋))) → (((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅) → ((𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅ ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
| 26 | 23, 24, 25 | sylc 65 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅ ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅)) |
| 27 | 12, 26 | anbi12d 747 |
. 2
⊢ (𝜑 → (((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ∧ (𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅) ↔ ((𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴 ∧ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
| 28 | | cantnfs.s |
. . 3
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 29 | | cantnfs.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
| 30 | 28, 29, 13 | cantnfs 8563 |
. 2
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ ((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ∧ (𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅))) |
| 31 | | cantnfrescl.t |
. . 3
⊢ 𝑇 = dom (𝐴 CNF 𝐷) |
| 32 | 31, 29, 18 | cantnfs 8563 |
. 2
⊢ (𝜑 → ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇 ↔ ((𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴 ∧ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
| 33 | 27, 30, 32 | 3bitr4d 300 |
1
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) |