| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . 5
⊢ (𝑠 = 𝑡 → (𝐼‘𝑠) = (𝐼‘𝑡)) |
| 2 | 1 | fveq2d 6195 |
. . . 4
⊢ (𝑠 = 𝑡 → (𝐼‘(𝐼‘𝑠)) = (𝐼‘(𝐼‘𝑡))) |
| 3 | 2, 1 | eqeq12d 2637 |
. . 3
⊢ (𝑠 = 𝑡 → ((𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ (𝐼‘(𝐼‘𝑡)) = (𝐼‘𝑡))) |
| 4 | 3 | cbvralv 3171 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑡)) = (𝐼‘𝑡)) |
| 5 | | ntrcls.d |
. . . . 5
⊢ 𝐷 = (𝑂‘𝐵) |
| 6 | | ntrcls.r |
. . . . 5
⊢ (𝜑 → 𝐼𝐷𝐾) |
| 7 | 5, 6 | ntrclsrcomplex 38333 |
. . . 4
⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 8 | 7 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 9 | 5, 6 | ntrclsrcomplex 38333 |
. . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 10 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 11 | | difeq2 3722 |
. . . . . 6
⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
| 12 | 11 | eqeq2d 2632 |
. . . . 5
⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝑡 = (𝐵 ∖ 𝑠) ↔ 𝑡 = (𝐵 ∖ (𝐵 ∖ 𝑡)))) |
| 13 | 12 | adantl 482 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝑡 = (𝐵 ∖ 𝑠) ↔ 𝑡 = (𝐵 ∖ (𝐵 ∖ 𝑡)))) |
| 14 | | elpwi 4168 |
. . . . . . 7
⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵) |
| 15 | | dfss4 3858 |
. . . . . . 7
⊢ (𝑡 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
| 16 | 14, 15 | sylib 208 |
. . . . . 6
⊢ (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
| 17 | 16 | eqcomd 2628 |
. . . . 5
⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
| 18 | 17 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
| 19 | 10, 13, 18 | rspcedvd 3317 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ 𝑠)) |
| 20 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘𝑡) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 21 | 20 | fveq2d 6195 |
. . . . . 6
⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘(𝐼‘𝑡)) = (𝐼‘(𝐼‘(𝐵 ∖ 𝑠)))) |
| 22 | 21, 20 | eqeq12d 2637 |
. . . . 5
⊢ (𝑡 = (𝐵 ∖ 𝑠) → ((𝐼‘(𝐼‘𝑡)) = (𝐼‘𝑡) ↔ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)))) |
| 23 | 22 | 3ad2ant3 1084 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → ((𝐼‘(𝐼‘𝑡)) = (𝐼‘𝑡) ↔ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)))) |
| 24 | | ntrcls.o |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| 25 | 24, 5, 6 | ntrclsiex 38351 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
| 26 | | elmapi 7879 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚
𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 28 | 27, 7 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼‘(𝐵 ∖ 𝑠)) ∈ 𝒫 𝐵) |
| 29 | 27, 28 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) ∈ 𝒫 𝐵) |
| 30 | 29 | elpwid 4170 |
. . . . . . . 8
⊢ (𝜑 → (𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) ⊆ 𝐵) |
| 31 | 28 | elpwid 4170 |
. . . . . . . 8
⊢ (𝜑 → (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) |
| 32 | | rcompleq 38318 |
. . . . . . . 8
⊢ (((𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) ⊆ 𝐵 ∧ (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) → ((𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))))) |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))))) |
| 34 | 33 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))))) |
| 35 | 24, 5, 6 | ntrclsnvobr 38350 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾𝐷𝐼) |
| 36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐾𝐷𝐼) |
| 37 | 24, 5, 35 | ntrclsiex 38351 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
| 38 | | elmapi 7879 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (𝒫 𝐵 ↑𝑚
𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
| 40 | 39 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐾‘𝑠) ∈ 𝒫 𝐵) |
| 41 | 24, 5, 36, 40 | ntrclsfv 38357 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐾‘(𝐾‘𝑠)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝐾‘𝑠))))) |
| 42 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
| 43 | 24, 5, 36, 42 | ntrclsfv 38357 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐾‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 44 | 43 | difeq2d 3728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐾‘𝑠)) = (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))))) |
| 45 | | dfss4 3858 |
. . . . . . . . . . . . 13
⊢ ((𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 46 | 31, 45 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 48 | 44, 47 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐾‘𝑠)) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 49 | 48 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ (𝐾‘𝑠))) = (𝐼‘(𝐼‘(𝐵 ∖ 𝑠)))) |
| 50 | 49 | difeq2d 3728 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝐾‘𝑠)))) = (𝐵 ∖ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠))))) |
| 51 | 41, 50 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐾‘(𝐾‘𝑠)) = (𝐵 ∖ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠))))) |
| 52 | 51, 43 | eqeq12d 2637 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵 ∖ 𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))))) |
| 53 | 34, 52 | bitr4d 271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) |
| 54 | 53 | 3adant3 1081 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → ((𝐼‘(𝐼‘(𝐵 ∖ 𝑠))) = (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) |
| 55 | 23, 54 | bitrd 268 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → ((𝐼‘(𝐼‘𝑡)) = (𝐼‘𝑡) ↔ (𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) |
| 56 | 8, 19, 55 | ralxfrd2 4884 |
. 2
⊢ (𝜑 → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑡)) = (𝐼‘𝑡) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) |
| 57 | 4, 56 | syl5bb 272 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) |