![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfveq1 | Structured version Visualization version GIF version |
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
ntrclsfv.c | ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsfveq1 | ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsfv.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4170 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
3 | dfss4 3858 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) | |
4 | 2, 3 | sylib 208 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) |
5 | 4 | eqcomd 2628 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐵 ∖ (𝐵 ∖ 𝐶))) |
6 | 5 | eqeq2d 2632 | . 2 ⊢ (𝜑 → ((𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) |
7 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
8 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
9 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
10 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
11 | 7, 8, 9, 10 | ntrclsfv 38357 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
12 | 11 | eqeq1d 2624 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶)) |
13 | 7, 8, 9 | ntrclskex 38352 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
14 | elmapi 7879 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
16 | 8, 9 | ntrclsrcomplex 38333 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
17 | 15, 16 | ffvelrnd 6360 | . . . 4 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) |
18 | 17 | elpwid 4170 | . . 3 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) |
19 | difssd 3738 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝐶) ⊆ 𝐵) | |
20 | rcompleq 38318 | . . 3 ⊢ (((𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵 ∧ (𝐵 ∖ 𝐶) ⊆ 𝐵) → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) | |
21 | 18, 19, 20 | syl2anc 693 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) |
22 | 6, 12, 21 | 3bitr4d 300 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
This theorem is referenced by: ntrclsfveq 38360 |
Copyright terms: Public domain | W3C validator |