MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refun0 Structured version   Visualization version   GIF version

Theorem refun0 21318
Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
refun0 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)

Proof of Theorem refun0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 𝐴 = 𝐴
2 eqid 2622 . . . 4 𝐵 = 𝐵
31, 2refbas 21313 . . 3 (𝐴Ref𝐵 𝐵 = 𝐴)
43adantr 481 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → 𝐵 = 𝐴)
5 elun 3753 . . . 4 (𝑥 ∈ (𝐴 ∪ {∅}) ↔ (𝑥𝐴𝑥 ∈ {∅}))
6 refssex 21314 . . . . . 6 ((𝐴Ref𝐵𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
76adantlr 751 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
8 0ss 3972 . . . . . . . . 9 ∅ ⊆ 𝑦
98a1i 11 . . . . . . . 8 ((𝐴Ref𝐵𝑦𝐵) → ∅ ⊆ 𝑦)
109reximdva0 3933 . . . . . . 7 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
1110adantr 481 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 ∅ ⊆ 𝑦)
12 elsni 4194 . . . . . . . 8 (𝑥 ∈ {∅} → 𝑥 = ∅)
13 sseq1 3626 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ⊆ 𝑦))
1413rexbidv 3052 . . . . . . . 8 (𝑥 = ∅ → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1512, 14syl 17 . . . . . . 7 (𝑥 ∈ {∅} → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1615adantl 482 . . . . . 6 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 ∅ ⊆ 𝑦))
1711, 16mpbird 247 . . . . 5 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ {∅}) → ∃𝑦𝐵 𝑥𝑦)
187, 17jaodan 826 . . . 4 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥 ∈ {∅})) → ∃𝑦𝐵 𝑥𝑦)
195, 18sylan2b 492 . . 3 (((𝐴Ref𝐵𝐵 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {∅})) → ∃𝑦𝐵 𝑥𝑦)
2019ralrimiva 2966 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)
21 refrel 21311 . . . . . 6 Rel Ref
2221brrelexi 5158 . . . . 5 (𝐴Ref𝐵𝐴 ∈ V)
23 p0ex 4853 . . . . 5 {∅} ∈ V
24 unexg 6959 . . . . 5 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ∪ {∅}) ∈ V)
2522, 23, 24sylancl 694 . . . 4 (𝐴Ref𝐵 → (𝐴 ∪ {∅}) ∈ V)
26 uniun 4456 . . . . . 6 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
27 0ex 4790 . . . . . . . 8 ∅ ∈ V
2827unisn 4451 . . . . . . 7 {∅} = ∅
2928uneq2i 3764 . . . . . 6 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
30 un0 3967 . . . . . 6 ( 𝐴 ∪ ∅) = 𝐴
3126, 29, 303eqtrri 2649 . . . . 5 𝐴 = (𝐴 ∪ {∅})
3231, 2isref 21312 . . . 4 ((𝐴 ∪ {∅}) ∈ V → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3325, 32syl 17 . . 3 (𝐴Ref𝐵 → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
3433adantr 481 . 2 ((𝐴Ref𝐵𝐵 ≠ ∅) → ((𝐴 ∪ {∅})Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑥 ∈ (𝐴 ∪ {∅})∃𝑦𝐵 𝑥𝑦)))
354, 20, 34mpbir2and 957 1 ((𝐴Ref𝐵𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  wss 3574  c0 3915  {csn 4177   cuni 4436   class class class wbr 4653  Refcref 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-ref 21308
This theorem is referenced by:  locfinref  29908
  Copyright terms: Public domain W3C validator