![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrcnvg | Structured version Visualization version GIF version |
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5305 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
relbrcnvg | ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5503 | . . . 4 ⊢ Rel ◡𝑅 | |
2 | brrelex12 5155 | . . . 4 ⊢ ((Rel ◡𝑅 ∧ 𝐴◡𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | mpan 706 | . . 3 ⊢ (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
5 | brrelex12 5155 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
6 | 5 | ancomd 467 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | 6 | ex 450 | . 2 ⊢ (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
8 | brcnvg 5303 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
9 | 8 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴))) |
10 | 4, 7, 9 | pm5.21ndd 369 | 1 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 Vcvv 3200 class class class wbr 4653 ◡ccnv 5113 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 |
This theorem is referenced by: eliniseg2 5505 relbrcnv 5506 isinv 16420 releleccnv 34021 relcnveq2 34094 brco2f1o 38330 brco3f1o 38331 ntrclsnvobr 38350 neicvgel1 38417 |
Copyright terms: Public domain | W3C validator |