MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex12 Structured version   Visualization version   GIF version

Theorem brrelex12 5155
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 5121 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 206 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32ssbrd 4696 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐴(V × V)𝐵))
43imp 445 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴(V × V)𝐵)
5 brxp 5147 . 2 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 5sylib 208 1 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  Vcvv 3200  wss 3574   class class class wbr 4653   × cxp 5112  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  brrelex  5156  brrelex2  5157  nprrel12  5160  relbrcnvg  5504  ovprc  6683  oprabv  6703  brovex  7348  ersym  7754  relelec  7787  encv  7963  fsuppunbi  8296  fpwwe2lem2  9454  fpwwelem  9467  brfi1uzind  13280  brfi1uzindOLD  13286  isstruct2  15867  brssc  16474  cofuval2  16547  isfull  16570  isfth  16574  isnat  16607  pslem  17206  frgpuplem  18185  dvdsr  18646  ulmval  24134  perpln1  25605  perpln2  25606  opelco3  31678  rngoablo2  33708  aovprc  41268  aovrcl  41269  nelbrim  41292
  Copyright terms: Public domain W3C validator