MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval2 Structured version   Visualization version   GIF version

Theorem rescval2 16488
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
rescval2.1 (𝜑𝐶𝑉)
rescval2.2 (𝜑𝑆𝑊)
rescval2.3 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
rescval2 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval2
StepHypRef Expression
1 rescval2.1 . . 3 (𝜑𝐶𝑉)
2 rescval2.3 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 rescval2.2 . . . . 5 (𝜑𝑆𝑊)
4 xpexg 6960 . . . . 5 ((𝑆𝑊𝑆𝑊) → (𝑆 × 𝑆) ∈ V)
53, 3, 4syl2anc 693 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ V)
6 fnex 6481 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
72, 5, 6syl2anc 693 . . 3 (𝜑𝐻 ∈ V)
8 rescval.1 . . . 4 𝐷 = (𝐶cat 𝐻)
98rescval 16487 . . 3 ((𝐶𝑉𝐻 ∈ V) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
101, 7, 9syl2anc 693 . 2 (𝜑𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
11 fndm 5990 . . . . . . 7 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
122, 11syl 17 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1312dmeqd 5326 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
14 dmxpid 5345 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1513, 14syl6eq 2672 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
1615oveq2d 6666 . . 3 (𝜑 → (𝐶s dom dom 𝐻) = (𝐶s 𝑆))
1716oveq1d 6665 . 2 (𝜑 → ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1810, 17eqtrd 2656 1 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   × cxp 5112  dom cdm 5114   Fn wfn 5883  cfv 5888  (class class class)co 6650  ndxcnx 15854   sSet csts 15855  s cress 15858  Hom chom 15952  cat cresc 16468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-resc 16471
This theorem is referenced by:  rescbas  16489  reschom  16490  rescco  16492  rescabs  16493  rescabs2  16494  dfrngc2  41972  dfringc2  42018  rngcresringcat  42030  rngcrescrhm  42085  rngcrescrhmALTV  42103
  Copyright terms: Public domain W3C validator