MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval Structured version   Visualization version   GIF version

Theorem resfval 16552
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
Assertion
Ref Expression
resfval (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem resfval
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resf 16521 . . 3 f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
21a1i 11 . 2 (𝜑 → ↾f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩))
3 simprl 794 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → 𝑓 = 𝐹)
43fveq2d 6195 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (1st𝑓) = (1st𝐹))
5 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → = 𝐻)
65dmeqd 5326 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom = dom 𝐻)
76dmeqd 5326 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom dom = dom dom 𝐻)
84, 7reseq12d 5397 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((1st𝑓) ↾ dom dom ) = ((1st𝐹) ↾ dom dom 𝐻))
93fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (2nd𝑓) = (2nd𝐹))
109fveq1d 6193 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((2nd𝑓)‘𝑥) = ((2nd𝐹)‘𝑥))
115fveq1d 6193 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥) = (𝐻𝑥))
1210, 11reseq12d 5397 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (((2nd𝑓)‘𝑥) ↾ (𝑥)) = (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))
136, 12mpteq12dv 4733 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥))) = (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥))))
148, 13opeq12d 4410 . 2 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
15 resfval.c . . 3 (𝜑𝐹𝑉)
16 elex 3212 . . 3 (𝐹𝑉𝐹 ∈ V)
1715, 16syl 17 . 2 (𝜑𝐹 ∈ V)
18 resfval.d . . 3 (𝜑𝐻𝑊)
19 elex 3212 . . 3 (𝐻𝑊𝐻 ∈ V)
2018, 19syl 17 . 2 (𝜑𝐻 ∈ V)
21 opex 4932 . . 3 ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V
2221a1i 11 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V)
232, 14, 17, 20, 22ovmpt2d 6788 1 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cmpt 4729  dom cdm 5114  cres 5116  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  f cresf 16517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-resf 16521
This theorem is referenced by:  resfval2  16553  resf1st  16554  resf2nd  16555  funcres  16556
  Copyright terms: Public domain W3C validator