| Step | Hyp | Ref
| Expression |
| 1 | | funcres.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 2 | | funcres.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| 3 | 1, 2 | resfval 16552 |
. . 3
⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
| 4 | 3 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
| 5 | | fvex 6201 |
. . . . . . 7
⊢
(1st ‘𝐹) ∈ V |
| 6 | 5 | resex 5443 |
. . . . . 6
⊢
((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
| 7 | | dmexg 7097 |
. . . . . . 7
⊢ (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V) |
| 8 | | mptexg 6484 |
. . . . . . 7
⊢ (dom
𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
| 9 | 2, 7, 8 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
| 10 | | op2ndg 7181 |
. . . . . 6
⊢
((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
| 11 | 6, 9, 10 | sylancr 695 |
. . . . 5
⊢ (𝜑 → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
| 12 | 4, 11 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
| 13 | 12 | opeq2d 4409 |
. . 3
⊢ (𝜑 → 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉 = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
| 14 | 3, 13 | eqtr4d 2659 |
. 2
⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉) |
| 15 | | eqid 2622 |
. . . 4
⊢
(Base‘(𝐶
↾cat 𝐻)) =
(Base‘(𝐶
↾cat 𝐻)) |
| 16 | | eqid 2622 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 17 | | eqid 2622 |
. . . 4
⊢ (Hom
‘(𝐶
↾cat 𝐻)) =
(Hom ‘(𝐶
↾cat 𝐻)) |
| 18 | | eqid 2622 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 19 | | eqid 2622 |
. . . 4
⊢
(Id‘(𝐶
↾cat 𝐻)) =
(Id‘(𝐶
↾cat 𝐻)) |
| 20 | | eqid 2622 |
. . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 21 | | eqid 2622 |
. . . 4
⊢
(comp‘(𝐶
↾cat 𝐻)) =
(comp‘(𝐶
↾cat 𝐻)) |
| 22 | | eqid 2622 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 23 | | eqid 2622 |
. . . . 5
⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) |
| 24 | 23, 2 | subccat 16508 |
. . . 4
⊢ (𝜑 → (𝐶 ↾cat 𝐻) ∈ Cat) |
| 25 | | funcrcl 16523 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 26 | 1, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 27 | 26 | simprd 479 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 28 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 29 | | relfunc 16522 |
. . . . . . . 8
⊢ Rel
(𝐶 Func 𝐷) |
| 30 | | 1st2ndbr 7217 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 31 | 29, 1, 30 | sylancr 695 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 32 | 28, 16, 31 | funcf1 16526 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 33 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝜑 → dom dom 𝐻 = dom dom 𝐻) |
| 34 | 2, 33 | subcfn 16501 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
| 35 | 2, 34, 28 | subcss1 16502 |
. . . . . 6
⊢ (𝜑 → dom dom 𝐻 ⊆ (Base‘𝐶)) |
| 36 | 32, 35 | fssresd 6071 |
. . . . 5
⊢ (𝜑 → ((1st
‘𝐹) ↾ dom dom
𝐻):dom dom 𝐻⟶(Base‘𝐷)) |
| 37 | 26 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 38 | 23, 28, 37, 34, 35 | rescbas 16489 |
. . . . . 6
⊢ (𝜑 → dom dom 𝐻 = (Base‘(𝐶 ↾cat 𝐻))) |
| 39 | 38 | feq2d 6031 |
. . . . 5
⊢ (𝜑 → (((1st
‘𝐹) ↾ dom dom
𝐻):dom dom 𝐻⟶(Base‘𝐷) ↔ ((1st
‘𝐹) ↾ dom dom
𝐻):(Base‘(𝐶 ↾cat 𝐻))⟶(Base‘𝐷))) |
| 40 | 36, 39 | mpbid 222 |
. . . 4
⊢ (𝜑 → ((1st
‘𝐹) ↾ dom dom
𝐻):(Base‘(𝐶 ↾cat 𝐻))⟶(Base‘𝐷)) |
| 41 | | fvex 6201 |
. . . . . . 7
⊢
((2nd ‘𝐹)‘𝑧) ∈ V |
| 42 | 41 | resex 5443 |
. . . . . 6
⊢
(((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)) ∈ V |
| 43 | | eqid 2622 |
. . . . . 6
⊢ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) |
| 44 | 42, 43 | fnmpti 6022 |
. . . . 5
⊢ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) Fn dom 𝐻 |
| 45 | 12 | eqcomd 2628 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) = (2nd ‘(𝐹 ↾f
𝐻))) |
| 46 | | fndm 5990 |
. . . . . . . 8
⊢ (𝐻 Fn (dom dom 𝐻 × dom dom 𝐻) → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻)) |
| 47 | 34, 46 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻)) |
| 48 | 38 | sqxpeqd 5141 |
. . . . . . 7
⊢ (𝜑 → (dom dom 𝐻 × dom dom 𝐻) = ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻)))) |
| 49 | 47, 48 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → dom 𝐻 = ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻)))) |
| 50 | 45, 49 | fneq12d 5983 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) Fn dom 𝐻 ↔ (2nd ‘(𝐹 ↾f
𝐻)) Fn ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻))))) |
| 51 | 44, 50 | mpbii 223 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) Fn ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻)))) |
| 52 | | eqid 2622 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 53 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 54 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → dom dom 𝐻 ⊆ (Base‘𝐶)) |
| 55 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
| 56 | 38 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → dom dom 𝐻 = (Base‘(𝐶 ↾cat 𝐻))) |
| 57 | 55, 56 | eleqtrrd 2704 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑥 ∈ dom dom 𝐻) |
| 58 | 54, 57 | sseldd 3604 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑥 ∈ (Base‘𝐶)) |
| 59 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
| 60 | 59, 56 | eleqtrrd 2704 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑦 ∈ dom dom 𝐻) |
| 61 | 54, 60 | sseldd 3604 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑦 ∈ (Base‘𝐶)) |
| 62 | 28, 52, 18, 53, 58, 61 | funcf2 16528 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 63 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐻 ∈ (Subcat‘𝐶)) |
| 64 | 34 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
| 65 | 63, 64, 52, 57, 60 | subcss2 16503 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
| 66 | 62, 65 | fssresd 6071 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 67 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 68 | 67, 63, 64, 57, 60 | resf2nd 16555 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦) = ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))) |
| 69 | 68 | feq1d 6030 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ↔ ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)))) |
| 70 | 66, 69 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 71 | 23, 28, 37, 34, 35 | reschom 16490 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (Hom ‘(𝐶 ↾cat 𝐻))) |
| 72 | 71 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐻 = (Hom ‘(𝐶 ↾cat 𝐻))) |
| 73 | 72 | oveqd 6667 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)) |
| 74 | | fvres 6207 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom dom 𝐻 → (((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
| 75 | 57, 74 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
| 76 | | fvres 6207 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom dom 𝐻 → (((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑦) = ((1st ‘𝐹)‘𝑦)) |
| 77 | 60, 76 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st ‘𝐹)‘𝑦)) |
| 78 | 75, 77 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)) = (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 79 | 78 | eqcomd 2628 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) = ((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦))) |
| 80 | 73, 79 | feq23d 6040 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ↔ (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)⟶((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)))) |
| 81 | 70, 80 | mpbid 222 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)⟶((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦))) |
| 82 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 83 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝐻 ∈ (Subcat‘𝐶)) |
| 84 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
| 85 | 38 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ dom dom 𝐻 ↔ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)))) |
| 86 | 85 | biimpar 502 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝑥 ∈ dom dom 𝐻) |
| 87 | 82, 83, 84, 86, 86 | resf2nd 16555 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑥) = ((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))) |
| 88 | | eqid 2622 |
. . . . . . . 8
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 89 | 23, 83, 84, 88, 86 | subcid 16507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘𝐶)‘𝑥) = ((Id‘(𝐶 ↾cat 𝐻))‘𝑥)) |
| 90 | 89 | eqcomd 2628 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘(𝐶 ↾cat 𝐻))‘𝑥) = ((Id‘𝐶)‘𝑥)) |
| 91 | 87, 90 | fveq12d 6197 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑥)‘((Id‘(𝐶 ↾cat 𝐻))‘𝑥)) = (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥))) |
| 92 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 93 | 38, 35 | eqsstr3d 3640 |
. . . . . . . 8
⊢ (𝜑 → (Base‘(𝐶 ↾cat 𝐻)) ⊆ (Base‘𝐶)) |
| 94 | 93 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝑥 ∈ (Base‘𝐶)) |
| 95 | 28, 88, 20, 92, 94 | funcid 16530 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) |
| 96 | 83, 84, 86, 88 | subcidcl 16504 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 97 | | fvres 6207 |
. . . . . . 7
⊢
(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) → (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) |
| 98 | 96, 97 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) |
| 99 | 86, 74 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
| 100 | 99 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘𝐷)‘(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) |
| 101 | 95, 98, 100 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥))) |
| 102 | 91, 101 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑥)‘((Id‘(𝐶 ↾cat 𝐻))‘𝑥)) = ((Id‘𝐷)‘(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥))) |
| 103 | 2 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐻 ∈ (Subcat‘𝐶)) |
| 104 | 34 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
| 105 | | simp21 1094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
| 106 | 38 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → dom dom 𝐻 = (Base‘(𝐶 ↾cat 𝐻))) |
| 107 | 105, 106 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑥 ∈ dom dom 𝐻) |
| 108 | | eqid 2622 |
. . . . . . . 8
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 109 | | simp22 1095 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
| 110 | 109, 106 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑦 ∈ dom dom 𝐻) |
| 111 | | simp23 1096 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
| 112 | 111, 106 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑧 ∈ dom dom 𝐻) |
| 113 | | simp3l 1089 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)) |
| 114 | 71 | 3ad2ant1 1082 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐻 = (Hom ‘(𝐶 ↾cat 𝐻))) |
| 115 | 114 | oveqd 6667 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)) |
| 116 | 113, 115 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 117 | | simp3r 1090 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧)) |
| 118 | 114 | oveqd 6667 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧)) |
| 119 | 117, 118 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
| 120 | 103, 104,
107, 108, 110, 112, 116, 119 | subccocl 16505 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 121 | | fvres 6207 |
. . . . . . 7
⊢ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
| 122 | 120, 121 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
| 123 | 31 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 124 | 35 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → dom dom 𝐻 ⊆ (Base‘𝐶)) |
| 125 | 124, 107 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
| 126 | 124, 110 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
| 127 | 124, 112 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
| 128 | 103, 104,
52, 107, 110 | subcss2 16503 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
| 129 | 128, 116 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 130 | 103, 104,
52, 110, 112 | subcss2 16503 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑦𝐻𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧)) |
| 131 | 130, 119 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 132 | 28, 52, 108, 22, 123, 125, 126, 127, 129, 131 | funcco 16531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
| 133 | 122, 132 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
| 134 | 1 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 135 | 134, 103,
104, 107, 112 | resf2nd 16555 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑧) = ((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))) |
| 136 | 23, 28, 37, 34, 35, 108 | rescco 16492 |
. . . . . . . . . 10
⊢ (𝜑 → (comp‘𝐶) = (comp‘(𝐶 ↾cat 𝐻))) |
| 137 | 136 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (comp‘𝐶) = (comp‘(𝐶 ↾cat 𝐻))) |
| 138 | 137 | eqcomd 2628 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (comp‘(𝐶 ↾cat 𝐻)) = (comp‘𝐶)) |
| 139 | 138 | oveqd 6667 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧) = (〈𝑥, 𝑦〉(comp‘𝐶)𝑧)) |
| 140 | 139 | oveqd 6667 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
| 141 | 135, 140 | fveq12d 6197 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧)𝑓)) = (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
| 142 | 107, 74 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
| 143 | 110, 76 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st ‘𝐹)‘𝑦)) |
| 144 | 142, 143 | opeq12d 4410 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 〈(((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉 = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉) |
| 145 | | fvres 6207 |
. . . . . . . 8
⊢ (𝑧 ∈ dom dom 𝐻 → (((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑧) = ((1st ‘𝐹)‘𝑧)) |
| 146 | 112, 145 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st ‘𝐹)‘𝑧)) |
| 147 | 144, 146 | oveq12d 6668 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (〈(((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉(comp‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧)) = (〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))) |
| 148 | 134, 103,
104, 110, 112 | resf2nd 16555 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧) = ((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))) |
| 149 | 148 | fveq1d 6193 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔) = (((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔)) |
| 150 | | fvres 6207 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑦𝐻𝑧) → (((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd ‘𝐹)𝑧)‘𝑔)) |
| 151 | 119, 150 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd ‘𝐹)𝑧)‘𝑔)) |
| 152 | 149, 151 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔) = ((𝑦(2nd ‘𝐹)𝑧)‘𝑔)) |
| 153 | 134, 103,
104, 107, 110 | resf2nd 16555 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦) = ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))) |
| 154 | 153 | fveq1d 6193 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓) = (((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓)) |
| 155 | | fvres 6207 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
| 156 | 116, 155 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
| 157 | 154, 156 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
| 158 | 147, 152,
157 | oveq123d 6671 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔)(〈(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉(comp‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
| 159 | 133, 141,
158 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧)𝑓)) = (((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔)(〈(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉(comp‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓))) |
| 160 | 15, 16, 17, 18, 19, 20, 21, 22, 24, 27, 40, 51, 81, 102, 159 | isfuncd 16525 |
. . 3
⊢ (𝜑 → ((1st
‘𝐹) ↾ dom dom
𝐻)((𝐶 ↾cat 𝐻) Func 𝐷)(2nd ‘(𝐹 ↾f 𝐻))) |
| 161 | | df-br 4654 |
. . 3
⊢
(((1st ‘𝐹) ↾ dom dom 𝐻)((𝐶 ↾cat 𝐻) Func 𝐷)(2nd ‘(𝐹 ↾f 𝐻)) ↔ 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉 ∈ ((𝐶 ↾cat 𝐻) Func 𝐷)) |
| 162 | 160, 161 | sylib 208 |
. 2
⊢ (𝜑 → 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉 ∈ ((𝐶 ↾cat 𝐻) Func 𝐷)) |
| 163 | 14, 162 | eqeltrd 2701 |
1
⊢ (𝜑 → (𝐹 ↾f 𝐻) ∈ ((𝐶 ↾cat 𝐻) Func 𝐷)) |