MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres Structured version   Visualization version   GIF version

Theorem funcres 16556
Description: A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
funcres.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
funcres.h (𝜑𝐻 ∈ (Subcat‘𝐶))
Assertion
Ref Expression
funcres (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))

Proof of Theorem funcres
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcres.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcres.h . . . 4 (𝜑𝐻 ∈ (Subcat‘𝐶))
31, 2resfval 16552 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6195 . . . . 5 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6201 . . . . . . 7 (1st𝐹) ∈ V
65resex 5443 . . . . . 6 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7097 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
8 mptexg 6484 . . . . . . 7 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . . . . 6 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op2ndg 7181 . . . . . 6 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
116, 9, 10sylancr 695 . . . . 5 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
124, 11eqtrd 2656 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
1312opeq2d 4409 . . 3 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
143, 13eqtr4d 2659 . 2 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩)
15 eqid 2622 . . . 4 (Base‘(𝐶cat 𝐻)) = (Base‘(𝐶cat 𝐻))
16 eqid 2622 . . . 4 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2622 . . . 4 (Hom ‘(𝐶cat 𝐻)) = (Hom ‘(𝐶cat 𝐻))
18 eqid 2622 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
19 eqid 2622 . . . 4 (Id‘(𝐶cat 𝐻)) = (Id‘(𝐶cat 𝐻))
20 eqid 2622 . . . 4 (Id‘𝐷) = (Id‘𝐷)
21 eqid 2622 . . . 4 (comp‘(𝐶cat 𝐻)) = (comp‘(𝐶cat 𝐻))
22 eqid 2622 . . . 4 (comp‘𝐷) = (comp‘𝐷)
23 eqid 2622 . . . . 5 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2423, 2subccat 16508 . . . 4 (𝜑 → (𝐶cat 𝐻) ∈ Cat)
25 funcrcl 16523 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
261, 25syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simprd 479 . . . 4 (𝜑𝐷 ∈ Cat)
28 eqid 2622 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
29 relfunc 16522 . . . . . . . 8 Rel (𝐶 Func 𝐷)
30 1st2ndbr 7217 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3129, 1, 30sylancr 695 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3228, 16, 31funcf1 16526 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 eqidd 2623 . . . . . . . 8 (𝜑 → dom dom 𝐻 = dom dom 𝐻)
342, 33subcfn 16501 . . . . . . 7 (𝜑𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
352, 34, 28subcss1 16502 . . . . . 6 (𝜑 → dom dom 𝐻 ⊆ (Base‘𝐶))
3632, 35fssresd 6071 . . . . 5 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻):dom dom 𝐻⟶(Base‘𝐷))
3726simpld 475 . . . . . . 7 (𝜑𝐶 ∈ Cat)
3823, 28, 37, 34, 35rescbas 16489 . . . . . 6 (𝜑 → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
3938feq2d 6031 . . . . 5 (𝜑 → (((1st𝐹) ↾ dom dom 𝐻):dom dom 𝐻⟶(Base‘𝐷) ↔ ((1st𝐹) ↾ dom dom 𝐻):(Base‘(𝐶cat 𝐻))⟶(Base‘𝐷)))
4036, 39mpbid 222 . . . 4 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻):(Base‘(𝐶cat 𝐻))⟶(Base‘𝐷))
41 fvex 6201 . . . . . . 7 ((2nd𝐹)‘𝑧) ∈ V
4241resex 5443 . . . . . 6 (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) ∈ V
43 eqid 2622 . . . . . 6 (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))
4442, 43fnmpti 6022 . . . . 5 (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) Fn dom 𝐻
4512eqcomd 2628 . . . . . 6 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) = (2nd ‘(𝐹f 𝐻)))
46 fndm 5990 . . . . . . . 8 (𝐻 Fn (dom dom 𝐻 × dom dom 𝐻) → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻))
4734, 46syl 17 . . . . . . 7 (𝜑 → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻))
4838sqxpeqd 5141 . . . . . . 7 (𝜑 → (dom dom 𝐻 × dom dom 𝐻) = ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
4947, 48eqtrd 2656 . . . . . 6 (𝜑 → dom 𝐻 = ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
5045, 49fneq12d 5983 . . . . 5 (𝜑 → ((𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) Fn dom 𝐻 ↔ (2nd ‘(𝐹f 𝐻)) Fn ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻)))))
5144, 50mpbii 223 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) Fn ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
52 eqid 2622 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5331adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
5435adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → dom dom 𝐻 ⊆ (Base‘𝐶))
55 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ (Base‘(𝐶cat 𝐻)))
5638adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
5755, 56eleqtrrd 2704 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ dom dom 𝐻)
5854, 57sseldd 3604 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ (Base‘𝐶))
59 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ (Base‘(𝐶cat 𝐻)))
6059, 56eleqtrrd 2704 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ dom dom 𝐻)
6154, 60sseldd 3604 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ (Base‘𝐶))
6228, 52, 18, 53, 58, 61funcf2 16528 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
632adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 ∈ (Subcat‘𝐶))
6434adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
6563, 64, 52, 57, 60subcss2 16503 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
6662, 65fssresd 6071 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
671adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐹 ∈ (𝐶 Func 𝐷))
6867, 63, 64, 57, 60resf2nd 16555 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦) = ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)))
6968feq1d 6030 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ↔ ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
7066, 69mpbird 247 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
7123, 28, 37, 34, 35reschom 16490 . . . . . . . 8 (𝜑𝐻 = (Hom ‘(𝐶cat 𝐻)))
7271adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 = (Hom ‘(𝐶cat 𝐻)))
7372oveqd 6667 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
74 fvres 6207 . . . . . . . . 9 (𝑥 ∈ dom dom 𝐻 → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
7557, 74syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
76 fvres 6207 . . . . . . . . 9 (𝑦 ∈ dom dom 𝐻 → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
7760, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
7875, 77oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)) = (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
7978eqcomd 2628 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) = ((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)))
8073, 79feq23d 6040 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ↔ (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥(Hom ‘(𝐶cat 𝐻))𝑦)⟶((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦))))
8170, 80mpbid 222 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥(Hom ‘(𝐶cat 𝐻))𝑦)⟶((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)))
821adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐹 ∈ (𝐶 Func 𝐷))
832adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐻 ∈ (Subcat‘𝐶))
8434adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
8538eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑥 ∈ dom dom 𝐻𝑥 ∈ (Base‘(𝐶cat 𝐻))))
8685biimpar 502 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝑥 ∈ dom dom 𝐻)
8782, 83, 84, 86, 86resf2nd 16555 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑥) = ((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥)))
88 eqid 2622 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
8923, 83, 84, 88, 86subcid 16507 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐶)‘𝑥) = ((Id‘(𝐶cat 𝐻))‘𝑥))
9089eqcomd 2628 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘(𝐶cat 𝐻))‘𝑥) = ((Id‘𝐶)‘𝑥))
9187, 90fveq12d 6197 . . . . 5 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑥)‘((Id‘(𝐶cat 𝐻))‘𝑥)) = (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)))
9231adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9338, 35eqsstr3d 3640 . . . . . . . 8 (𝜑 → (Base‘(𝐶cat 𝐻)) ⊆ (Base‘𝐶))
9493sselda 3603 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝑥 ∈ (Base‘𝐶))
9528, 88, 20, 92, 94funcid 16530 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
9683, 84, 86, 88subcidcl 16504 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
97 fvres 6207 . . . . . . 7 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)))
9896, 97syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)))
9986, 74syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
10099fveq2d 6195 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
10195, 98, 1003eqtr4d 2666 . . . . 5 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)))
10291, 101eqtrd 2656 . . . 4 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑥)‘((Id‘(𝐶cat 𝐻))‘𝑥)) = ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)))
10323ad2ant1 1082 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 ∈ (Subcat‘𝐶))
104343ad2ant1 1082 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
105 simp21 1094 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘(𝐶cat 𝐻)))
106383ad2ant1 1082 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
107105, 106eleqtrrd 2704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ dom dom 𝐻)
108 eqid 2622 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
109 simp22 1095 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘(𝐶cat 𝐻)))
110109, 106eleqtrrd 2704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ dom dom 𝐻)
111 simp23 1096 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘(𝐶cat 𝐻)))
112111, 106eleqtrrd 2704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ dom dom 𝐻)
113 simp3l 1089 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
114713ad2ant1 1082 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 = (Hom ‘(𝐶cat 𝐻)))
115114oveqd 6667 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
116113, 115eleqtrrd 2704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
117 simp3r 1090 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))
118114oveqd 6667 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))
119117, 118eleqtrrd 2704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
120103, 104, 107, 108, 110, 112, 116, 119subccocl 16505 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
121 fvres 6207 . . . . . . 7 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
122120, 121syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
123313ad2ant1 1082 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
124353ad2ant1 1082 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → dom dom 𝐻 ⊆ (Base‘𝐶))
125124, 107sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘𝐶))
126124, 110sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘𝐶))
127124, 112sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘𝐶))
128103, 104, 52, 107, 110subcss2 16503 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
129128, 116sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
130103, 104, 52, 110, 112subcss2 16503 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦𝐻𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧))
131130, 119sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
13228, 52, 108, 22, 123, 125, 126, 127, 129, 131funcco 16531 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
133122, 132eqtrd 2656 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
13413ad2ant1 1082 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷))
135134, 103, 104, 107, 112resf2nd 16555 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑧) = ((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧)))
13623, 28, 37, 34, 35, 108rescco 16492 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶cat 𝐻)))
1371363ad2ant1 1082 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (comp‘𝐶) = (comp‘(𝐶cat 𝐻)))
138137eqcomd 2628 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (comp‘(𝐶cat 𝐻)) = (comp‘𝐶))
139138oveqd 6667 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
140139oveqd 6667 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
141135, 140fveq12d 6197 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓)) = (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
142107, 74syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
143110, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
144142, 143opeq12d 4410 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩)
145 fvres 6207 . . . . . . . 8 (𝑧 ∈ dom dom 𝐻 → (((1st𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st𝐹)‘𝑧))
146112, 145syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st𝐹)‘𝑧))
147144, 146oveq12d 6668 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧)) = (⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧)))
148134, 103, 104, 110, 112resf2nd 16555 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦(2nd ‘(𝐹f 𝐻))𝑧) = ((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧)))
149148fveq1d 6193 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔) = (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔))
150 fvres 6207 . . . . . . . 8 (𝑔 ∈ (𝑦𝐻𝑧) → (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
151119, 150syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
152149, 151eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
153134, 103, 104, 107, 110resf2nd 16555 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦) = ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)))
154153fveq1d 6193 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓) = (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓))
155 fvres 6207 . . . . . . . 8 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
156116, 155syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
157154, 156eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
158147, 152, 157oveq123d 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔)(⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
159133, 141, 1583eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓)) = (((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔)(⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓)))
16015, 16, 17, 18, 19, 20, 21, 22, 24, 27, 40, 51, 81, 102, 159isfuncd 16525 . . 3 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻)((𝐶cat 𝐻) Func 𝐷)(2nd ‘(𝐹f 𝐻)))
161 df-br 4654 . . 3 (((1st𝐹) ↾ dom dom 𝐻)((𝐶cat 𝐻) Func 𝐷)(2nd ‘(𝐹f 𝐻)) ↔ ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ ∈ ((𝐶cat 𝐻) Func 𝐷))
162160, 161sylib 208 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ ∈ ((𝐶cat 𝐻) Func 𝐷))
16314, 162eqeltrd 2701 1 (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  cres 5116  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  cat cresc 16468  Subcatcsubc 16469   Func cfunc 16514  f cresf 16517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472  df-func 16518  df-resf 16521
This theorem is referenced by:  funcrngcsetc  41998  funcringcsetc  42035
  Copyright terms: Public domain W3C validator