Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resimass Structured version   Visualization version   GIF version

Theorem resimass 39449
Description: The image of a restriction is a subset of the original image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
resimass ((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶)

Proof of Theorem resimass
StepHypRef Expression
1 resss 5422 . 2 (𝐴𝐵) ⊆ 𝐴
2 imass1 5500 . 2 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶))
31, 2ax-mp 5 1 ((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wss 3574  cres 5116  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  limsupres  39937  limsupresxr  39998  liminfresxr  39999
  Copyright terms: Public domain W3C validator