MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpt3 Structured version   Visualization version   GIF version

Theorem resmpt3 5450
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 5409 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ (𝐴𝐵))
2 ssid 3624 . . . 4 𝐴𝐴
3 resmpt 5449 . . . 4 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42, 3ax-mp 5 . . 3 ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
54reseq1i 5392 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ 𝐵)
6 inss1 3833 . . 3 (𝐴𝐵) ⊆ 𝐴
7 resmpt 5449 . . 3 ((𝐴𝐵) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶))
86, 7ax-mp 5 . 2 ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
91, 5, 83eqtr3i 2652 1 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cin 3573  wss 3574  cmpt 4729  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  offres  7163  lo1resb  14295  o1resb  14297  measinb2  30286  eulerpartgbij  30434  mptima  39437  imassmpt  39481  limsupresicompt  39988  liminfresicompt  40012
  Copyright terms: Public domain W3C validator