| Step | Hyp | Ref
| Expression |
| 1 | | nnex 11026 |
. . . . 5
⊢ ℕ
∈ V |
| 2 | | indf1ofs 30088 |
. . . . 5
⊢ (ℕ
∈ V → ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ
∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚
ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin}) |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
⊢
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚
ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} |
| 4 | | incom 3805 |
. . . . . . 7
⊢ (({0, 1}
↑𝑚 ℕ) ∩ {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin}) = ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ ({0, 1}
↑𝑚 ℕ)) |
| 5 | | eulerpart.r |
. . . . . . . 8
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 6 | 5 | ineq2i 3811 |
. . . . . . 7
⊢ (({0, 1}
↑𝑚 ℕ) ∩ 𝑅) = (({0, 1} ↑𝑚
ℕ) ∩ {𝑓 ∣
(◡𝑓 “ ℕ) ∈
Fin}) |
| 7 | | dfrab2 3903 |
. . . . . . 7
⊢ {𝑓 ∈ ({0, 1}
↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ∈ Fin} = ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ ({0, 1}
↑𝑚 ℕ)) |
| 8 | 4, 6, 7 | 3eqtr4i 2654 |
. . . . . 6
⊢ (({0, 1}
↑𝑚 ℕ) ∩ 𝑅) = {𝑓 ∈ ({0, 1} ↑𝑚
ℕ) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 9 | | elmapfun 7881 |
. . . . . . . . 9
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 ℕ) → Fun 𝑓) |
| 10 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1}) |
| 11 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝑓:ℕ⟶{0, 1} →
ran 𝑓 ⊆ {0,
1}) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 ℕ) → ran 𝑓 ⊆ {0, 1}) |
| 13 | | fimacnvinrn2 6349 |
. . . . . . . . . 10
⊢ ((Fun
𝑓 ∧ ran 𝑓 ⊆ {0, 1}) → (◡𝑓 “ ℕ) = (◡𝑓 “ (ℕ ∩ {0,
1}))) |
| 14 | | df-pr 4180 |
. . . . . . . . . . . . . 14
⊢ {0, 1} =
({0} ∪ {1}) |
| 15 | 14 | ineq2i 3811 |
. . . . . . . . . . . . 13
⊢ (ℕ
∩ {0, 1}) = (ℕ ∩ ({0} ∪ {1})) |
| 16 | | indi 3873 |
. . . . . . . . . . . . 13
⊢ (ℕ
∩ ({0} ∪ {1})) = ((ℕ ∩ {0}) ∪ (ℕ ∩
{1})) |
| 17 | | 0nnn 11052 |
. . . . . . . . . . . . . . 15
⊢ ¬ 0
∈ ℕ |
| 18 | | disjsn 4246 |
. . . . . . . . . . . . . . 15
⊢ ((ℕ
∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) |
| 19 | 17, 18 | mpbir 221 |
. . . . . . . . . . . . . 14
⊢ (ℕ
∩ {0}) = ∅ |
| 20 | | 1nn 11031 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ |
| 21 | | 1ex 10035 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
V |
| 22 | 21 | snss 4316 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℕ ↔ {1} ⊆ ℕ) |
| 23 | 20, 22 | mpbi 220 |
. . . . . . . . . . . . . . . 16
⊢ {1}
⊆ ℕ |
| 24 | | dfss 3589 |
. . . . . . . . . . . . . . . 16
⊢ ({1}
⊆ ℕ ↔ {1} = ({1} ∩ ℕ)) |
| 25 | 23, 24 | mpbi 220 |
. . . . . . . . . . . . . . 15
⊢ {1} =
({1} ∩ ℕ) |
| 26 | | incom 3805 |
. . . . . . . . . . . . . . 15
⊢ ({1}
∩ ℕ) = (ℕ ∩ {1}) |
| 27 | 25, 26 | eqtr2i 2645 |
. . . . . . . . . . . . . 14
⊢ (ℕ
∩ {1}) = {1} |
| 28 | 19, 27 | uneq12i 3765 |
. . . . . . . . . . . . 13
⊢ ((ℕ
∩ {0}) ∪ (ℕ ∩ {1})) = (∅ ∪ {1}) |
| 29 | 15, 16, 28 | 3eqtri 2648 |
. . . . . . . . . . . 12
⊢ (ℕ
∩ {0, 1}) = (∅ ∪ {1}) |
| 30 | | uncom 3757 |
. . . . . . . . . . . 12
⊢ (∅
∪ {1}) = ({1} ∪ ∅) |
| 31 | | un0 3967 |
. . . . . . . . . . . 12
⊢ ({1}
∪ ∅) = {1} |
| 32 | 29, 30, 31 | 3eqtri 2648 |
. . . . . . . . . . 11
⊢ (ℕ
∩ {0, 1}) = {1} |
| 33 | 32 | imaeq2i 5464 |
. . . . . . . . . 10
⊢ (◡𝑓 “ (ℕ ∩ {0, 1})) = (◡𝑓 “ {1}) |
| 34 | 13, 33 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((Fun
𝑓 ∧ ran 𝑓 ⊆ {0, 1}) → (◡𝑓 “ ℕ) = (◡𝑓 “ {1})) |
| 35 | 9, 12, 34 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 ℕ) → (◡𝑓 “ ℕ) = (◡𝑓 “ {1})) |
| 36 | 35 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 ℕ) → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝑓 “ {1}) ∈ Fin)) |
| 37 | 36 | rabbiia 3185 |
. . . . . 6
⊢ {𝑓 ∈ ({0, 1}
↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ ({0, 1}
↑𝑚 ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} |
| 38 | 8, 37 | eqtr2i 2645 |
. . . . 5
⊢ {𝑓 ∈ ({0, 1}
↑𝑚 ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} = (({0, 1}
↑𝑚 ℕ) ∩ 𝑅) |
| 39 | | f1oeq3 6129 |
. . . . 5
⊢ ({𝑓 ∈ ({0, 1}
↑𝑚 ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} = (({0, 1}
↑𝑚 ℕ) ∩ 𝑅) → (((𝟭‘ℕ) ↾
Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚
ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} ↔
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑𝑚 ℕ)
∩ 𝑅))) |
| 40 | 38, 39 | ax-mp 5 |
. . . 4
⊢
(((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚
ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} ↔
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑𝑚 ℕ)
∩ 𝑅)) |
| 41 | 3, 40 | mpbi 220 |
. . 3
⊢
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑𝑚 ℕ)
∩ 𝑅) |
| 42 | | eulerpart.j |
. . . . . . 7
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 43 | | eulerpart.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
| 44 | 42, 43 | oddpwdc 30416 |
. . . . . 6
⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| 45 | | f1opwfi 8270 |
. . . . . 6
⊢ (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin)
↦ (𝐹 “ 𝑎)):(𝒫 (𝐽 × ℕ0) ∩
Fin)–1-1-onto→(𝒫 ℕ ∩
Fin)) |
| 46 | 44, 45 | ax-mp 5 |
. . . . 5
⊢ (𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)):(𝒫
(𝐽 ×
ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin) |
| 47 | | eulerpart.p |
. . . . . . . 8
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| 48 | | eulerpart.o |
. . . . . . . 8
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| 49 | | eulerpart.d |
. . . . . . . 8
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| 50 | | eulerpart.h |
. . . . . . . 8
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| 51 | | eulerpart.m |
. . . . . . . 8
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| 52 | 47, 48, 49, 42, 43, 50, 51 | eulerpartlem1 30429 |
. . . . . . 7
⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
| 53 | | bitsf1o 15167 |
. . . . . . . . . . . . . 14
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
| 54 | 53 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (bits ↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin)) |
| 55 | 42, 1 | rabex2 4815 |
. . . . . . . . . . . . . 14
⊢ 𝐽 ∈ V |
| 56 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 𝐽 ∈
V) |
| 57 | | nn0ex 11298 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
| 58 | 57 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ℕ0 ∈ V) |
| 59 | 57 | pwex 4848 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
ℕ0 ∈ V |
| 60 | 59 | inex1 4799 |
. . . . . . . . . . . . . 14
⊢
(𝒫 ℕ0 ∩ Fin) ∈ V |
| 61 | 60 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝒫 ℕ0 ∩ Fin) ∈ V) |
| 62 | | 0nn0 11307 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
| 63 | 62 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 0 ∈ ℕ0) |
| 64 | | fvres 6207 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℕ0 → ((bits ↾ ℕ0)‘0) =
(bits‘0)) |
| 65 | 62, 64 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((bits
↾ ℕ0)‘0) = (bits‘0) |
| 66 | | 0bits 15161 |
. . . . . . . . . . . . . 14
⊢
(bits‘0) = ∅ |
| 67 | 65, 66 | eqtr2i 2645 |
. . . . . . . . . . . . 13
⊢ ∅ =
((bits ↾ ℕ0)‘0) |
| 68 | | elmapi 7879 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝐽) → 𝑓:𝐽⟶ℕ0) |
| 69 | | frnnn0supp 11349 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ V ∧ 𝑓:𝐽⟶ℕ0) → (𝑓 supp 0) = (◡𝑓 “ ℕ)) |
| 70 | 55, 68, 69 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝐽) → (𝑓 supp 0) = (◡𝑓 “ ℕ)) |
| 71 | 70 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝐽) → ((𝑓 supp 0) ∈ Fin ↔ (◡𝑓 “ ℕ) ∈
Fin)) |
| 72 | 71 | rabbiia 3185 |
. . . . . . . . . . . . . 14
⊢ {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ (𝑓 supp 0) ∈ Fin} = {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 73 | | elmapfun 7881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝐽) → Fun 𝑓) |
| 74 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
| 75 | | funisfsupp 8280 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑓 ∧ 𝑓 ∈ V ∧ 0 ∈ ℕ0)
→ (𝑓 finSupp 0 ↔
(𝑓 supp 0) ∈
Fin)) |
| 76 | 74, 62, 75 | mp3an23 1416 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑓 → (𝑓 finSupp 0 ↔ (𝑓 supp 0) ∈
Fin)) |
| 77 | 73, 76 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝐽) → (𝑓 finSupp 0 ↔ (𝑓 supp 0) ∈ Fin)) |
| 78 | 77 | rabbiia 3185 |
. . . . . . . . . . . . . 14
⊢ {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ (𝑓 supp 0) ∈ Fin} |
| 79 | | incom 3805 |
. . . . . . . . . . . . . . 15
⊢ ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩
(ℕ0 ↑𝑚 𝐽)) = ((ℕ0
↑𝑚 𝐽) ∩ {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
| 80 | | dfrab2 3903 |
. . . . . . . . . . . . . . 15
⊢ {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ (◡𝑓 “ ℕ) ∈ Fin} = ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩
(ℕ0 ↑𝑚 𝐽)) |
| 81 | 5 | ineq2i 3811 |
. . . . . . . . . . . . . . 15
⊢
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) = ((ℕ0
↑𝑚 𝐽) ∩ {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
| 82 | 79, 80, 81 | 3eqtr4ri 2655 |
. . . . . . . . . . . . . 14
⊢
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) = {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 83 | 72, 78, 82 | 3eqtr4ri 2655 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) = {𝑓 ∈ (ℕ0
↑𝑚 𝐽) ∣ 𝑓 finSupp 0} |
| 84 | | elmapfun 7881 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑𝑚 𝐽) → Fun 𝑟) |
| 85 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑟 ∈ V |
| 86 | | 0ex 4790 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ V |
| 87 | | funisfsupp 8280 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑟 ∧ 𝑟 ∈ V ∧ ∅ ∈ V) →
(𝑟 finSupp ∅ ↔
(𝑟 supp ∅) ∈
Fin)) |
| 88 | 85, 86, 87 | mp3an23 1416 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑟 → (𝑟 finSupp ∅ ↔ (𝑟 supp ∅) ∈
Fin)) |
| 89 | 88 | bicomd 213 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝑟 → ((𝑟 supp ∅) ∈ Fin ↔
𝑟 finSupp
∅)) |
| 90 | 84, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑𝑚 𝐽) → ((𝑟 supp ∅) ∈ Fin ↔ 𝑟 finSupp
∅)) |
| 91 | 90 | rabbiia 3185 |
. . . . . . . . . . . . 13
⊢ {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ 𝑟 finSupp ∅} |
| 92 | 54, 56, 58, 61, 63, 67, 83, 91 | fcobijfs 29501 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑓 ∈
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}) |
| 93 | | elinel1 3799 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) → 𝑓 ∈ (ℕ0
↑𝑚 𝐽)) |
| 94 | | frn 6053 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐽⟶ℕ0 → ran 𝑓 ⊆
ℕ0) |
| 95 | | cores 5638 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
𝑓 ⊆
ℕ0 → ((bits ↾ ℕ0) ∘ 𝑓) = (bits ∘ 𝑓)) |
| 96 | 68, 94, 95 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝐽) → ((bits ↾ ℕ0)
∘ 𝑓) = (bits ∘
𝑓)) |
| 97 | 93, 96 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) → ((bits ↾ ℕ0)
∘ 𝑓) = (bits ∘
𝑓)) |
| 98 | 97 | mpteq2ia 4740 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)) = (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) |
| 99 | 98 | eqcomi 2631 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)) |
| 100 | | f1oeq1 6127 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)) → ((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ↔ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})) |
| 101 | 99, 100 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((𝑓 ∈
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ↔ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})) |
| 102 | 92, 101 | mpbird 247 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑓 ∈
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}) |
| 103 | 102 | trud 1493 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| 104 | | ssrab2 3687 |
. . . . . . . . . . . . . . . 16
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ⊆
ℕ |
| 105 | 42, 104 | eqsstri 3635 |
. . . . . . . . . . . . . . 15
⊢ 𝐽 ⊆
ℕ |
| 106 | 1, 57, 105 | 3pm3.2i 1239 |
. . . . . . . . . . . . . 14
⊢ (ℕ
∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ) |
| 107 | | eulerpart.t |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| 108 | | cnveq 5296 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑜 → ◡𝑓 = ◡𝑜) |
| 109 | | dfn2 11305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑜 → ℕ = (ℕ0
∖ {0})) |
| 111 | 108, 110 | imaeq12d 5467 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑜 → (◡𝑓 “ ℕ) = (◡𝑜 “ (ℕ0 ∖
{0}))) |
| 112 | 111 | sseq1d 3632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑜 → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡𝑜 “ (ℕ0 ∖ {0}))
⊆ 𝐽)) |
| 113 | 112 | cbvrabv 3199 |
. . . . . . . . . . . . . . . 16
⊢ {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} = {𝑜 ∈ (ℕ0
↑𝑚 ℕ) ∣ (◡𝑜 “ (ℕ0 ∖ {0}))
⊆ 𝐽} |
| 114 | 107, 113 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = {𝑜 ∈ (ℕ0
↑𝑚 ℕ) ∣ (◡𝑜 “ (ℕ0 ∖ {0}))
⊆ 𝐽} |
| 115 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) = (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) |
| 116 | 114, 115 | resf1o 29505 |
. . . . . . . . . . . . . 14
⊢
(((ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ) ∧ 0 ∈
ℕ0) → (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1-onto→(ℕ0
↑𝑚 𝐽)) |
| 117 | 106, 62, 116 | mp2an 708 |
. . . . . . . . . . . . 13
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1-onto→(ℕ0
↑𝑚 𝐽) |
| 118 | | f1of1 6136 |
. . . . . . . . . . . . 13
⊢ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1-onto→(ℕ0
↑𝑚 𝐽) → (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1→(ℕ0 ↑𝑚
𝐽)) |
| 119 | 117, 118 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1→(ℕ0 ↑𝑚
𝐽) |
| 120 | | inss1 3833 |
. . . . . . . . . . . 12
⊢ (𝑇 ∩ 𝑅) ⊆ 𝑇 |
| 121 | | f1ores 6151 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1→(ℕ0 ↑𝑚
𝐽) ∧ (𝑇 ∩ 𝑅) ⊆ 𝑇) → ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅))) |
| 122 | 119, 120,
121 | mp2an 708 |
. . . . . . . . . . 11
⊢ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) |
| 123 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑜 ∈ V |
| 124 | 123 | resex 5443 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑜 ↾ 𝐽) ∈ V |
| 125 | 124, 115 | fnmpti 6022 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) Fn 𝑇 |
| 126 | | fvelimab 6253 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) Fn 𝑇 ∧ (𝑇 ∩ 𝑅) ⊆ 𝑇) → (𝑓 ∈ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓)) |
| 127 | 125, 120,
126 | mp2an 708 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓) |
| 128 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) = (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) |
| 129 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑚 ∈ V |
| 130 | 129 | resex 5443 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ↾ 𝐽) ∈ V |
| 131 | 128, 130 | elrnmpti 5376 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑓 = (𝑚 ↾ 𝐽)) |
| 132 | 47, 48, 49, 42, 43, 50, 51, 5, 107 | eulerpartlemt 30433 |
. . . . . . . . . . . . . . . . 17
⊢
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) |
| 133 | 132 | eleq2i 2693 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↔ 𝑓 ∈ ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽))) |
| 134 | | elinel1 3799 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) → 𝑚 ∈ 𝑇) |
| 135 | 115 | fvtresfn 6284 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ 𝑇 → ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = (𝑚 ↾ 𝐽)) |
| 136 | 135 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ 𝑇 → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ (𝑚 ↾ 𝐽) = 𝑓)) |
| 137 | 134, 136 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ (𝑚 ↾ 𝐽) = 𝑓)) |
| 138 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ↾ 𝐽) = 𝑓 ↔ 𝑓 = (𝑚 ↾ 𝐽)) |
| 139 | 137, 138 | syl6bb 276 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ 𝑓 = (𝑚 ↾ 𝐽))) |
| 140 | 139 | rexbiia 3040 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑚 ∈
(𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑓 = (𝑚 ↾ 𝐽)) |
| 141 | 131, 133,
140 | 3bitr4ri 293 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑚 ∈
(𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ 𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 142 | 127, 141 | bitri 264 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ 𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 143 | 142 | eqriv 2619 |
. . . . . . . . . . . . 13
⊢ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) = ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) |
| 144 | | f1oeq3 6129 |
. . . . . . . . . . . . 13
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) = ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅))) |
| 145 | 143, 144 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 146 | | resmpt 5449 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∩ 𝑅) ⊆ 𝑇 → ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))) |
| 147 | | f1oeq1 6127 |
. . . . . . . . . . . . 13
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅))) |
| 148 | 120, 146,
147 | mp2b 10 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 149 | 145, 148 | bitri 264 |
. . . . . . . . . . 11
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 150 | 122, 149 | mpbi 220 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅) |
| 151 | | f1oco 6159 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0
↑𝑚 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) → ((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}) |
| 152 | 103, 150,
151 | mp2an 708 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| 153 | | f1of 6137 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0
↑𝑚 𝐽) ∩ 𝑅) → (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)⟶((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 154 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) |
| 155 | 154 | fmpt 6381 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑜 ∈
(𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)⟶((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 156 | 155 | biimpri 218 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)⟶((ℕ0
↑𝑚 𝐽) ∩ 𝑅) → ∀𝑜 ∈ (𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 157 | 150, 153,
156 | mp2b 10 |
. . . . . . . . . . . . 13
⊢
∀𝑜 ∈
(𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) |
| 158 | 157 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ ∀𝑜 ∈
(𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅)) |
| 159 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))) |
| 160 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑓 ∈
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓))) |
| 161 | | coeq2 5280 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑜 ↾ 𝐽) → (bits ∘ 𝑓) = (bits ∘ (𝑜 ↾ 𝐽))) |
| 162 | 158, 159,
160, 161 | fmptcof 6397 |
. . . . . . . . . . 11
⊢ (⊤
→ ((𝑓 ∈
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) |
| 163 | 162 | eqcomd 2628 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))) = ((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)))) |
| 164 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑇 ∩ 𝑅) = (𝑇 ∩ 𝑅)) |
| 165 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 𝐻 = {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}) |
| 166 | 163, 164,
165 | f1oeq123d 6133 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻 ↔ ((𝑓 ∈ ((ℕ0
↑𝑚 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})) |
| 167 | 152, 166 | mpbiri 248 |
. . . . . . . 8
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻) |
| 168 | 167 | trud 1493 |
. . . . . . 7
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻 |
| 169 | | f1oco 6159 |
. . . . . . 7
⊢ ((𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻) → (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 170 | 52, 168, 169 | mp2an 708 |
. . . . . 6
⊢ (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
| 171 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) |
| 172 | | bitsf 15149 |
. . . . . . . . . . . . . 14
⊢
bits:ℤ⟶𝒫 ℕ0 |
| 173 | | zex 11386 |
. . . . . . . . . . . . . 14
⊢ ℤ
∈ V |
| 174 | | fex 6490 |
. . . . . . . . . . . . . 14
⊢
((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈
V) → bits ∈ V) |
| 175 | 172, 173,
174 | mp2an 708 |
. . . . . . . . . . . . 13
⊢ bits
∈ V |
| 176 | 175, 124 | coex 7118 |
. . . . . . . . . . . 12
⊢ (bits
∘ (𝑜 ↾ 𝐽)) ∈ V |
| 177 | 176 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (bits ∘ (𝑜 ↾ 𝐽)) ∈ V) |
| 178 | 171, 177 | fvmpt2d 6293 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))‘𝑜) = (bits ∘ (𝑜 ↾ 𝐽))) |
| 179 | | f1of 6137 |
. . . . . . . . . . . 12
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻 → (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)⟶𝐻) |
| 180 | 167, 179 | syl 17 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)⟶𝐻) |
| 181 | 180 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))‘𝑜) ∈ 𝐻) |
| 182 | 178, 181 | eqeltrrd 2702 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (bits ∘ (𝑜 ↾ 𝐽)) ∈ 𝐻) |
| 183 | | f1ofn 6138 |
. . . . . . . . . . . 12
⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
→ 𝑀 Fn 𝐻) |
| 184 | 52, 183 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑀 Fn 𝐻 |
| 185 | | dffn5 6241 |
. . . . . . . . . . 11
⊢ (𝑀 Fn 𝐻 ↔ 𝑀 = (𝑟 ∈ 𝐻 ↦ (𝑀‘𝑟))) |
| 186 | 184, 185 | mpbi 220 |
. . . . . . . . . 10
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ (𝑀‘𝑟)) |
| 187 | 186 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 𝑀 = (𝑟 ∈ 𝐻 ↦ (𝑀‘𝑟))) |
| 188 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑟 = (bits ∘ (𝑜 ↾ 𝐽)) → (𝑀‘𝑟) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
| 189 | 182, 171,
187, 188 | fmptco 6396 |
. . . . . . . 8
⊢ (⊤
→ (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 190 | 189 | trud 1493 |
. . . . . . 7
⊢ (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
| 191 | | f1oeq1 6127 |
. . . . . . 7
⊢ ((𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) → ((𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin))) |
| 192 | 190, 191 | ax-mp 5 |
. . . . . 6
⊢ ((𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 193 | 170, 192 | mpbi 220 |
. . . . 5
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
| 194 | | f1oco 6159 |
. . . . 5
⊢ (((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)):(𝒫
(𝐽 ×
ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin) ∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
→ ((𝑎 ∈
(𝒫 (𝐽 ×
ℕ0) ∩ Fin) ↦ (𝐹 “ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩
Fin)) |
| 195 | 46, 193, 194 | mp2an 708 |
. . . 4
⊢ ((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) |
| 196 | | simpr 477 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → 𝑜 ∈ (𝑇 ∩ 𝑅)) |
| 197 | | fvex 6201 |
. . . . . . . . 9
⊢ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) ∈ V |
| 198 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
| 199 | 198 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ∧ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) ∈ V) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))‘𝑜) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
| 200 | 196, 197,
199 | sylancl 694 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))‘𝑜) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
| 201 | | f1of 6137 |
. . . . . . . . . 10
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)⟶(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 202 | 193, 201 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)⟶(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 203 | 202 | ffvelrnda 6359 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))‘𝑜) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 204 | 200, 203 | eqeltrrd 2702 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
| 205 | | eqidd 2623 |
. . . . . . 7
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 206 | | eqidd 2623 |
. . . . . . 7
⊢ (⊤
→ (𝑎 ∈ (𝒫
(𝐽 ×
ℕ0) ∩ Fin) ↦ (𝐹 “ 𝑎)) = (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin)
↦ (𝐹 “ 𝑎))) |
| 207 | | imaeq2 5462 |
. . . . . . 7
⊢ (𝑎 = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) → (𝐹 “ 𝑎) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 208 | 204, 205,
206, 207 | fmptco 6396 |
. . . . . 6
⊢ (⊤
→ ((𝑎 ∈
(𝒫 (𝐽 ×
ℕ0) ∩ Fin) ↦ (𝐹 “ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 209 | 208 | trud 1493 |
. . . . 5
⊢ ((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 210 | | f1oeq1 6127 |
. . . . 5
⊢ (((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) → (((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin)
↦ (𝐹 “ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩
Fin))) |
| 211 | 209, 210 | ax-mp 5 |
. . . 4
⊢ (((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩
Fin)) |
| 212 | 195, 211 | mpbi 220 |
. . 3
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) |
| 213 | | f1oco 6159 |
. . 3
⊢
((((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑𝑚 ℕ)
∩ 𝑅) ∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin)) →
(((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅)) |
| 214 | 41, 212, 213 | mp2an 708 |
. 2
⊢
(((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅) |
| 215 | | eulerpart.g |
. . . 4
⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 216 | 43 | mpt2exg 7245 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ V ∧
ℕ0 ∈ V) → 𝐹 ∈ V) |
| 217 | 55, 57, 216 | mp2an 708 |
. . . . . . . . 9
⊢ 𝐹 ∈ V |
| 218 | | imaexg 7103 |
. . . . . . . . 9
⊢ (𝐹 ∈ V → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ V) |
| 219 | 217, 218 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ V |
| 220 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 221 | 220 | fvmpt2 6291 |
. . . . . . . 8
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ∧ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ V) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))‘𝑜) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 222 | 196, 219,
221 | sylancl 694 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))‘𝑜) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
| 223 | | f1of 6137 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) → (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)⟶(𝒫 ℕ ∩
Fin)) |
| 224 | 212, 223 | mp1i 13 |
. . . . . . . 8
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)⟶(𝒫 ℕ ∩
Fin)) |
| 225 | 224 | ffvelrnda 6359 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))‘𝑜) ∈ (𝒫 ℕ ∩
Fin)) |
| 226 | 222, 225 | eqeltrrd 2702 |
. . . . . 6
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ (𝒫 ℕ ∩
Fin)) |
| 227 | | eqidd 2623 |
. . . . . 6
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 228 | | indf1o 30086 |
. . . . . . . . . . 11
⊢ (ℕ
∈ V → (𝟭‘ℕ):𝒫 ℕ–1-1-onto→({0,
1} ↑𝑚 ℕ)) |
| 229 | | f1ofn 6138 |
. . . . . . . . . . 11
⊢
((𝟭‘ℕ):𝒫 ℕ–1-1-onto→({0,
1} ↑𝑚 ℕ) → (𝟭‘ℕ) Fn
𝒫 ℕ) |
| 230 | 1, 228, 229 | mp2b 10 |
. . . . . . . . . 10
⊢
(𝟭‘ℕ) Fn 𝒫 ℕ |
| 231 | | dffn5 6241 |
. . . . . . . . . 10
⊢
((𝟭‘ℕ) Fn 𝒫 ℕ ↔
(𝟭‘ℕ) = (𝑏 ∈ 𝒫 ℕ ↦
((𝟭‘ℕ)‘𝑏))) |
| 232 | 230, 231 | mpbi 220 |
. . . . . . . . 9
⊢
(𝟭‘ℕ) = (𝑏 ∈ 𝒫 ℕ ↦
((𝟭‘ℕ)‘𝑏)) |
| 233 | 232 | reseq1i 5392 |
. . . . . . . 8
⊢
((𝟭‘ℕ) ↾ Fin) = ((𝑏 ∈ 𝒫 ℕ ↦
((𝟭‘ℕ)‘𝑏)) ↾ Fin) |
| 234 | | resmpt3 5450 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝒫 ℕ
↦ ((𝟭‘ℕ)‘𝑏)) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦
((𝟭‘ℕ)‘𝑏)) |
| 235 | 233, 234 | eqtri 2644 |
. . . . . . 7
⊢
((𝟭‘ℕ) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦
((𝟭‘ℕ)‘𝑏)) |
| 236 | 235 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ((𝟭‘ℕ) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦
((𝟭‘ℕ)‘𝑏))) |
| 237 | | fveq2 6191 |
. . . . . 6
⊢ (𝑏 = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) →
((𝟭‘ℕ)‘𝑏) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 238 | 226, 227,
236, 237 | fmptco 6396 |
. . . . 5
⊢ (⊤
→ (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))))) |
| 239 | 238 | trud 1493 |
. . . 4
⊢
(((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 240 | 215, 239 | eqtr4i 2647 |
. . 3
⊢ 𝐺 = (((𝟭‘ℕ)
↾ Fin) ∘ (𝑜
∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 241 | | f1oeq1 6127 |
. . 3
⊢ (𝐺 = (((𝟭‘ℕ)
↾ Fin) ∘ (𝑜
∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅) ↔ (((𝟭‘ℕ) ↾
Fin) ∘ (𝑜 ∈
(𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅))) |
| 242 | 240, 241 | ax-mp 5 |
. 2
⊢ (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅) ↔ (((𝟭‘ℕ) ↾
Fin) ∘ (𝑜 ∈
(𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅)) |
| 243 | 214, 242 | mpbir 221 |
1
⊢ 𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅) |