| Step | Hyp | Ref
| Expression |
| 1 | | lo1res 14290 |
. 2
⊢ (𝐹 ∈ ≤𝑂(1) →
(𝐹 ↾ (𝐵[,)+∞)) ∈
≤𝑂(1)) |
| 2 | | lo1resb.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 3 | 2 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 4 | 3 | reseq1d 5395 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐵[,)+∞))) |
| 5 | | resmpt3 5450 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) |
| 6 | 4, 5 | syl6eq 2672 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥))) |
| 7 | 6 | eleq1d 2686 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) ↔
(𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ ≤𝑂(1))) |
| 8 | | inss1 3833 |
. . . . . 6
⊢ (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 |
| 9 | | lo1resb.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 10 | 8, 9 | syl5ss 3614 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆
ℝ) |
| 11 | 8 | sseli 3599 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥 ∈ 𝐴) |
| 12 | | ffvelrn 6357 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
| 13 | 2, 11, 12 | syl2an 494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹‘𝑥) ∈ ℝ) |
| 14 | 10, 13 | ello1mpt 14252 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ ≤𝑂(1) ↔
∃𝑦 ∈ ℝ
∃𝑧 ∈ ℝ
∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) |
| 15 | | elin 3796 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞))) |
| 16 | 15 | imbi1i 339 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) |
| 17 | | impexp 462 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)))) |
| 18 | 16, 17 | bitri 264 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)))) |
| 19 | | impexp 462 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) → (𝐹‘𝑥) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) |
| 20 | | lo1resb.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 21 | 20 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 22 | 9 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ) |
| 23 | 22 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 24 | | elicopnf 12269 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥))) |
| 25 | 24 | baibd 948 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ 𝑥)) |
| 26 | 21, 23, 25 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ 𝑥)) |
| 27 | 26 | anbi1d 741 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
| 28 | | simplrl 800 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 29 | | maxle 12022 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
| 30 | 21, 28, 23, 29 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
| 31 | 27, 30 | bitr4d 271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) ↔ if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥)) |
| 32 | 31 | imbi1d 331 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) → (𝐹‘𝑥) ≤ 𝑧) ↔ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) |
| 33 | 19, 32 | syl5bbr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)) ↔ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) |
| 34 | 33 | pm5.74da 723 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) ↔ (𝑥 ∈ 𝐴 → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)))) |
| 35 | 18, 34 | syl5bb 272 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)))) |
| 36 | 35 | ralbidv2 2984 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧) ↔ ∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧))) |
| 37 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℝ) |
| 38 | | simprl 794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ) |
| 39 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ) |
| 40 | 38, 39 | ifcld 4131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ) |
| 41 | | simprr 796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ) |
| 42 | | ello12r 14248 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧)) → 𝐹 ∈ ≤𝑂(1)) |
| 43 | 42 | 3expia 1267 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1))) |
| 44 | 37, 22, 40, 41, 43 | syl22anc 1327 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1))) |
| 45 | 36, 44 | sylbid 230 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1))) |
| 46 | 45 | rexlimdvva 3038 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1))) |
| 47 | 14, 46 | sylbid 230 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ ≤𝑂(1) → 𝐹 ∈
≤𝑂(1))) |
| 48 | 7, 47 | sylbid 230 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) →
𝐹 ∈
≤𝑂(1))) |
| 49 | 1, 48 | impbid2 216 |
1
⊢ (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈
≤𝑂(1))) |