| Step | Hyp | Ref
| Expression |
| 1 | | 1re 10039 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 2 | 1 | rexri 10097 |
. . . . . 6
⊢ 1 ∈
ℝ* |
| 3 | | 0le1 10551 |
. . . . . 6
⊢ 0 ≤
1 |
| 4 | | pnfge 11964 |
. . . . . . 7
⊢ (1 ∈
ℝ* → 1 ≤ +∞) |
| 5 | 2, 4 | ax-mp 5 |
. . . . . 6
⊢ 1 ≤
+∞ |
| 6 | | 0xr 10086 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
| 7 | | pnfxr 10092 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
| 8 | | elicc1 12219 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) → (1
∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧
1 ≤ +∞))) |
| 9 | 6, 7, 8 | mp2an 708 |
. . . . . 6
⊢ (1 ∈
(0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤
+∞)) |
| 10 | 2, 3, 5, 9 | mpbir3an 1244 |
. . . . 5
⊢ 1 ∈
(0[,]+∞) |
| 11 | | 0e0iccpnf 12283 |
. . . . 5
⊢ 0 ∈
(0[,]+∞) |
| 12 | 10, 11 | keepel 4155 |
. . . 4
⊢ if(0
∈ 𝑎, 1, 0) ∈
(0[,]+∞) |
| 13 | 12 | rgenw 2924 |
. . 3
⊢
∀𝑎 ∈
𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈
(0[,]+∞) |
| 14 | | df-dde 30296 |
. . . 4
⊢ δ =
(𝑎 ∈ 𝒫 ℝ
↦ if(0 ∈ 𝑎, 1,
0)) |
| 15 | 14 | fmpt 6381 |
. . 3
⊢
(∀𝑎 ∈
𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞) ↔
δ:𝒫 ℝ⟶(0[,]+∞)) |
| 16 | 13, 15 | mpbi 220 |
. 2
⊢
δ:𝒫 ℝ⟶(0[,]+∞) |
| 17 | | 0ss 3972 |
. . 3
⊢ ∅
⊆ ℝ |
| 18 | | noel 3919 |
. . 3
⊢ ¬ 0
∈ ∅ |
| 19 | | ddeval0 30298 |
. . 3
⊢ ((∅
⊆ ℝ ∧ ¬ 0 ∈ ∅) → (δ‘∅) =
0) |
| 20 | 17, 18, 19 | mp2an 708 |
. 2
⊢
(δ‘∅) = 0 |
| 21 | | rabxm 3961 |
. . . . . . . . 9
⊢ 𝑥 = ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) |
| 22 | | esumeq1 30096 |
. . . . . . . . 9
⊢ (𝑥 = ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → Σ*𝑦 ∈ 𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦)) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . 8
⊢
Σ*𝑦
∈ 𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) |
| 24 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝒫 𝒫
ℝ |
| 25 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} |
| 26 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} |
| 27 | | rabexg 4812 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → {𝑎 ∈
𝑥 ∣ 0 ∈ 𝑎} ∈ V) |
| 28 | | rabexg 4812 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → {𝑎 ∈
𝑥 ∣ ¬ 0 ∈
𝑎} ∈
V) |
| 29 | | rabnc 3962 |
. . . . . . . . . 10
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅ |
| 30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ({𝑎 ∈
𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅) |
| 31 | | elrabi 3359 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} → 𝑦 ∈ 𝑥) |
| 32 | 31 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝑥) |
| 33 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫
ℝ) |
| 34 | | elelpwi 4171 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 𝒫 ℝ) →
𝑦 ∈ 𝒫
ℝ) |
| 35 | 32, 33, 34 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ) |
| 36 | 16 | ffvelrni 6358 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 ℝ →
(δ‘𝑦) ∈
(0[,]+∞)) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → (δ‘𝑦) ∈
(0[,]+∞)) |
| 38 | | elrabi 3359 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} → 𝑦 ∈ 𝑥) |
| 39 | 38 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝑥) |
| 40 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫
ℝ) |
| 41 | 39, 40, 34 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ) |
| 42 | 41, 36 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) ∈
(0[,]+∞)) |
| 43 | 24, 25, 26, 27, 28, 30, 37, 42 | esumsplit 30115 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦))) |
| 44 | 23, 43 | syl5eq 2668 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ 𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦))) |
| 45 | 44 | adantr 481 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → Σ*𝑦 ∈ 𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦))) |
| 46 | | esumeq1 30096 |
. . . . . . . . . . . 12
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦)) |
| 47 | 46 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦)) |
| 48 | | simp-4l 806 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑥 ∈ 𝒫 𝒫
ℝ) |
| 49 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V |
| 50 | 49 | rabsnel 29341 |
. . . . . . . . . . . . 13
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 𝑘 ∈ 𝑥) |
| 51 | 50 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑘 ∈ 𝑥) |
| 52 | | eleq2 2690 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑘 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑘)) |
| 53 | 49, 52 | rabsnt 4266 |
. . . . . . . . . . . . 13
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 0 ∈ 𝑘) |
| 54 | 53 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 0 ∈ 𝑘) |
| 55 | | elelpwi 4171 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 𝒫 ℝ) →
𝑘 ∈ 𝒫
ℝ) |
| 56 | 55 | ancoms 469 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑘 ∈
𝑥) → 𝑘 ∈ 𝒫
ℝ) |
| 57 | 56 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ∈ 𝒫 ℝ) |
| 58 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝒫 ℝ ∧
𝑦 = 𝑘) → 𝑦 = 𝑘) |
| 59 | 58 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝒫 ℝ ∧
𝑦 = 𝑘) → (δ‘𝑦) = (δ‘𝑘)) |
| 60 | 49 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝒫 ℝ →
𝑘 ∈
V) |
| 61 | 16 | ffvelrni 6358 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝒫 ℝ →
(δ‘𝑘) ∈
(0[,]+∞)) |
| 62 | 59, 60, 61 | esumsn 30127 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝒫 ℝ →
Σ*𝑦 ∈
{𝑘} (δ‘𝑦) = (δ‘𝑘)) |
| 63 | 57, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) →
Σ*𝑦 ∈
{𝑘} (δ‘𝑦) = (δ‘𝑘)) |
| 64 | 57 | elpwid 4170 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ⊆ ℝ) |
| 65 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → 0 ∈ 𝑘) |
| 66 | | ddeval1 30297 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ⊆ ℝ ∧ 0 ∈
𝑘) →
(δ‘𝑘) =
1) |
| 67 | 64, 65, 66 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → (δ‘𝑘) = 1) |
| 68 | 63, 67 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) →
Σ*𝑦 ∈
{𝑘} (δ‘𝑦) = 1) |
| 69 | 48, 51, 54, 68 | syl12anc 1324 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1) |
| 70 | 47, 69 | eqtrd 2656 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1) |
| 71 | | df-disj 4621 |
. . . . . . . . . . . . . . 15
⊢
(Disj 𝑦
∈ 𝑥 𝑦 ↔ ∀𝑘∃*𝑦 ∈ 𝑥 𝑘 ∈ 𝑦) |
| 72 | | c0ex 10034 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
| 73 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘 ∈ 𝑦 ↔ 0 ∈ 𝑦)) |
| 74 | 73 | rmobidv 3131 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (∃*𝑦 ∈ 𝑥 𝑘 ∈ 𝑦 ↔ ∃*𝑦 ∈ 𝑥 0 ∈ 𝑦)) |
| 75 | 72, 74 | spcv 3299 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘∃*𝑦 ∈ 𝑥 𝑘 ∈ 𝑦 → ∃*𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 76 | 71, 75 | sylbi 207 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑦
∈ 𝑥 𝑦 → ∃*𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 77 | | rmo5 3162 |
. . . . . . . . . . . . . . . 16
⊢
(∃*𝑦 ∈
𝑥 0 ∈ 𝑦 ↔ (∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦)) |
| 78 | 77 | biimpi 206 |
. . . . . . . . . . . . . . 15
⊢
(∃*𝑦 ∈
𝑥 0 ∈ 𝑦 → (∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦)) |
| 79 | 78 | imp 445 |
. . . . . . . . . . . . . 14
⊢
((∃*𝑦 ∈
𝑥 0 ∈ 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 80 | 76, 79 | sylan 488 |
. . . . . . . . . . . . 13
⊢
((Disj 𝑦
∈ 𝑥 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 81 | | reusn 4262 |
. . . . . . . . . . . . 13
⊢
(∃!𝑦 ∈
𝑥 0 ∈ 𝑦 ↔ ∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘}) |
| 82 | 80, 81 | sylib 208 |
. . . . . . . . . . . 12
⊢
((Disj 𝑦
∈ 𝑥 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘}) |
| 83 | | eleq2 2690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑦 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑦)) |
| 84 | 83 | cbvrabv 3199 |
. . . . . . . . . . . . . . . 16
⊢ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} |
| 85 | 84 | eqeq1i 2627 |
. . . . . . . . . . . . . . 15
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ {𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘}) |
| 86 | 50 | ancri 575 |
. . . . . . . . . . . . . . 15
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → (𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
| 87 | 85, 86 | sylbir 225 |
. . . . . . . . . . . . . 14
⊢ ({𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → (𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
| 88 | 87 | eximi 1762 |
. . . . . . . . . . . . 13
⊢
(∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘(𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
| 89 | | df-rex 2918 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ ∃𝑘(𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
| 90 | 88, 89 | sylibr 224 |
. . . . . . . . . . . 12
⊢
(∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘 ∈ 𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) |
| 91 | 82, 90 | syl 17 |
. . . . . . . . . . 11
⊢
((Disj 𝑦
∈ 𝑥 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃𝑘 ∈ 𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) |
| 92 | 91 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃𝑘 ∈ 𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) |
| 93 | 70, 92 | r19.29a 3078 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1) |
| 94 | | elpwi 4168 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → 𝑥 ⊆
𝒫 ℝ) |
| 95 | | sspwuni 4611 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ 𝒫 ℝ
↔ ∪ 𝑥 ⊆ ℝ) |
| 96 | 94, 95 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ∪ 𝑥 ⊆ ℝ) |
| 97 | | eluni2 4440 |
. . . . . . . . . . . 12
⊢ (0 ∈
∪ 𝑥 ↔ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 98 | 97 | biimpri 218 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑥 0 ∈ 𝑦 → 0 ∈ ∪ 𝑥) |
| 99 | | ddeval1 30297 |
. . . . . . . . . . 11
⊢ ((∪ 𝑥
⊆ ℝ ∧ 0 ∈ ∪ 𝑥) → (δ‘∪ 𝑥) =
1) |
| 100 | 96, 98, 99 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ ∃𝑦
∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
1) |
| 101 | 100 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
1) |
| 102 | 93, 101 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘∪ 𝑥)) |
| 103 | | nfre1 3005 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦∃𝑦 ∈ 𝑥 0 ∈ 𝑦 |
| 104 | 103 | nfn 1784 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 ¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 |
| 105 | 83 | elrab 3363 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ↔ (𝑦 ∈ 𝑥 ∧ 0 ∈ 𝑦)) |
| 106 | 105 | exbii 1774 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ 0 ∈ 𝑦)) |
| 107 | | neq0 3930 |
. . . . . . . . . . . . . . 15
⊢ (¬
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) |
| 108 | | df-rex 2918 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 ∈
𝑥 0 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ 0 ∈ 𝑦)) |
| 109 | 106, 107,
108 | 3bitr4i 292 |
. . . . . . . . . . . . . 14
⊢ (¬
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 110 | 109 | biimpi 206 |
. . . . . . . . . . . . 13
⊢ (¬
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅ → ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 111 | 110 | con1i 144 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅) |
| 112 | 104, 111 | esumeq1d 30097 |
. . . . . . . . . . 11
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ ∅(δ‘𝑦)) |
| 113 | | esumnul 30110 |
. . . . . . . . . . 11
⊢
Σ*𝑦
∈ ∅(δ‘𝑦) = 0 |
| 114 | 112, 113 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
| 115 | 114 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
| 116 | 97 | biimpi 206 |
. . . . . . . . . . . 12
⊢ (0 ∈
∪ 𝑥 → ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
| 117 | 116 | con3i 150 |
. . . . . . . . . . 11
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → ¬ 0 ∈ ∪ 𝑥) |
| 118 | | ddeval0 30298 |
. . . . . . . . . . 11
⊢ ((∪ 𝑥
⊆ ℝ ∧ ¬ 0 ∈ ∪ 𝑥) → (δ‘∪ 𝑥) =
0) |
| 119 | 96, 117, 118 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
0) |
| 120 | 119 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
0) |
| 121 | 115, 120 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘∪ 𝑥)) |
| 122 | 102, 121 | pm2.61dan 832 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘∪ 𝑥)) |
| 123 | 41 | elpwid 4170 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ⊆ ℝ) |
| 124 | 83 | notbid 308 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (¬ 0 ∈ 𝑎 ↔ ¬ 0 ∈ 𝑦)) |
| 125 | 124 | elrab 3363 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} ↔ (𝑦 ∈ 𝑥 ∧ ¬ 0 ∈ 𝑦)) |
| 126 | 125 | simprbi 480 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} → ¬ 0 ∈ 𝑦) |
| 127 | 126 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → ¬ 0 ∈ 𝑦) |
| 128 | | ddeval0 30298 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ ℝ ∧ ¬ 0
∈ 𝑦) →
(δ‘𝑦) =
0) |
| 129 | 123, 127,
128 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) = 0) |
| 130 | 129 | esumeq2dv 30100 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}0) |
| 131 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 132 | 131 | rabex 4813 |
. . . . . . . . . 10
⊢ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V |
| 133 | 26 | esum0 30111 |
. . . . . . . . . 10
⊢ ({𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0) |
| 134 | 132, 133 | ax-mp 5 |
. . . . . . . . 9
⊢
Σ*𝑦
∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0 |
| 135 | 130, 134 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
| 136 | 135 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
| 137 | 122, 136 | oveq12d 6668 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)) = ((δ‘∪ 𝑥)
+𝑒 0)) |
| 138 | | vuniex 6954 |
. . . . . . . . . 10
⊢ ∪ 𝑥
∈ V |
| 139 | 138 | elpw 4164 |
. . . . . . . . 9
⊢ (∪ 𝑥
∈ 𝒫 ℝ ↔ ∪ 𝑥 ⊆ ℝ) |
| 140 | 139 | biimpri 218 |
. . . . . . . 8
⊢ (∪ 𝑥
⊆ ℝ → ∪ 𝑥 ∈ 𝒫 ℝ) |
| 141 | | iccssxr 12256 |
. . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* |
| 142 | 16 | ffvelrni 6358 |
. . . . . . . . 9
⊢ (∪ 𝑥
∈ 𝒫 ℝ → (δ‘∪
𝑥) ∈
(0[,]+∞)) |
| 143 | 141, 142 | sseldi 3601 |
. . . . . . . 8
⊢ (∪ 𝑥
∈ 𝒫 ℝ → (δ‘∪
𝑥) ∈
ℝ*) |
| 144 | | xaddid1 12072 |
. . . . . . . 8
⊢
((δ‘∪ 𝑥) ∈ ℝ* →
((δ‘∪ 𝑥) +𝑒 0) =
(δ‘∪ 𝑥)) |
| 145 | 96, 140, 143, 144 | 4syl 19 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ((δ‘∪ 𝑥) +𝑒 0) =
(δ‘∪ 𝑥)) |
| 146 | 145 | adantr 481 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → ((δ‘∪ 𝑥)
+𝑒 0) = (δ‘∪ 𝑥)) |
| 147 | 45, 137, 146 | 3eqtrrd 2661 |
. . . . 5
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)) |
| 148 | 147 | adantrl 752 |
. . . 4
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑥 ≼
ω ∧ Disj 𝑦
∈ 𝑥 𝑦)) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)) |
| 149 | 148 | ex 450 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ((𝑥 ≼
ω ∧ Disj 𝑦
∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦))) |
| 150 | 149 | rgen 2922 |
. 2
⊢
∀𝑥 ∈
𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)) |
| 151 | | reex 10027 |
. . . 4
⊢ ℝ
∈ V |
| 152 | | pwsiga 30193 |
. . . 4
⊢ (ℝ
∈ V → 𝒫 ℝ ∈
(sigAlgebra‘ℝ)) |
| 153 | 151, 152 | ax-mp 5 |
. . 3
⊢ 𝒫
ℝ ∈ (sigAlgebra‘ℝ) |
| 154 | | elrnsiga 30189 |
. . 3
⊢
(𝒫 ℝ ∈ (sigAlgebra‘ℝ) → 𝒫
ℝ ∈ ∪ ran sigAlgebra) |
| 155 | | ismeas 30262 |
. . 3
⊢
(𝒫 ℝ ∈ ∪ ran sigAlgebra
→ (δ ∈ (measures‘𝒫 ℝ) ↔
(δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅)
= 0 ∧ ∀𝑥 ∈
𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦))))) |
| 156 | 153, 154,
155 | mp2b 10 |
. 2
⊢ (δ
∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫
ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝒫 ℝ((𝑥
≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)))) |
| 157 | 16, 20, 150, 156 | mpbir3an 1244 |
1
⊢ δ
∈ (measures‘𝒫 ℝ) |