MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwrepswhash1 Structured version   Visualization version   GIF version

Theorem cshwrepswhash1 15809
Description: The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwrepswhash1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (#‘𝑀) = 1)
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤   𝐴,𝑛,𝑤   𝑛,𝑁,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwrepswhash1
Dummy variables 𝑖 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 repsdf2 13525 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
31, 2sylan2 491 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
4 simp1 1061 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑊 ∈ Word 𝑉)
54adantl 482 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 𝑊 ∈ Word 𝑉)
6 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑊) → (𝑁 ∈ ℕ ↔ (#‘𝑊) ∈ ℕ))
76eqcoms 2630 . . . . . . . . . . . . . . 15 ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ ↔ (#‘𝑊) ∈ ℕ))
8 lbfzo0 12507 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(#‘𝑊)) ↔ (#‘𝑊) ∈ ℕ)
98biimpri 218 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ → 0 ∈ (0..^(#‘𝑊)))
107, 9syl6bi 243 . . . . . . . . . . . . . 14 ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → 0 ∈ (0..^(#‘𝑊))))
11103ad2ant2 1083 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → (𝑁 ∈ ℕ → 0 ∈ (0..^(#‘𝑊))))
1211com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(#‘𝑊))))
1312adantl 482 . . . . . . . . . . 11 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(#‘𝑊))))
1413imp 445 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 0 ∈ (0..^(#‘𝑊)))
15 cshw0 13540 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
165, 15syl 17 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → (𝑊 cyclShift 0) = 𝑊)
17 oveq2 6658 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 0))
1817eqeq1d 2624 . . . . . . . . . . 11 (𝑛 = 0 → ((𝑊 cyclShift 𝑛) = 𝑊 ↔ (𝑊 cyclShift 0) = 𝑊))
1918rspcev 3309 . . . . . . . . . 10 ((0 ∈ (0..^(#‘𝑊)) ∧ (𝑊 cyclShift 0) = 𝑊) → ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
2014, 16, 19syl2anc 693 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
21 eqeq2 2633 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑊))
2221rexbidv 3052 . . . . . . . . . 10 (𝑤 = 𝑊 → (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊))
2322rspcev 3309 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
245, 20, 23syl2anc 693 . . . . . . . 8 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
2524ex 450 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
263, 25sylbid 230 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
27263impia 1261 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
28 repsw 13522 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
291, 28sylan2 491 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
30293adant3 1081 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
31 simpll3 1102 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝑊 = (𝐴 repeatS 𝑁))
3231oveq1d 6665 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → (𝑊 cyclShift 𝑛) = ((𝐴 repeatS 𝑁) cyclShift 𝑛))
33 simp1 1061 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝐴𝑉)
3433ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝐴𝑉)
3513ad2ant2 1083 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑁 ∈ ℕ0)
3635ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝑁 ∈ ℕ0)
37 elfzoelz 12470 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(#‘𝑊)) → 𝑛 ∈ ℤ)
3837adantl 482 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝑛 ∈ ℤ)
39 repswcshw 13558 . . . . . . . . . . . 12 ((𝐴𝑉𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4034, 36, 38, 39syl3anc 1326 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4132, 40eqtrd 2656 . . . . . . . . . 10 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → (𝑊 cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4241eqeq1d 2624 . . . . . . . . 9 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4342biimpd 219 . . . . . . . 8 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4443rexlimdva 3031 . . . . . . 7 (((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4544ralrimiva 2966 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
46 eqeq1 2626 . . . . . . . . 9 (𝑤 = (𝐴 repeatS 𝑁) → (𝑤 = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4746imbi2d 330 . . . . . . . 8 (𝑤 = (𝐴 repeatS 𝑁) → ((∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4847ralbidv 2986 . . . . . . 7 (𝑤 = (𝐴 repeatS 𝑁) → (∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4948rspcev 3309 . . . . . 6 (((𝐴 repeatS 𝑁) ∈ Word 𝑉 ∧ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
5030, 45, 49syl2anc 693 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
51 eqeq2 2633 . . . . . . 7 (𝑤 = 𝑢 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑢))
5251rexbidv 3052 . . . . . 6 (𝑤 = 𝑢 → (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢))
5352reu7 3401 . . . . 5 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ (∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ∧ ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢)))
5427, 50, 53sylanbrc 698 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
55 reusn 4262 . . . 4 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5654, 55sylib 208 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
57 cshwrepswhash1.m . . . . 5 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
5857eqeq1i 2627 . . . 4 (𝑀 = {𝑟} ↔ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5958exbii 1774 . . 3 (∃𝑟 𝑀 = {𝑟} ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
6056, 59sylibr 224 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟 𝑀 = {𝑟})
6157cshwsex 15807 . . . . . 6 (𝑊 ∈ Word 𝑉𝑀 ∈ V)
62613ad2ant1 1082 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑀 ∈ V)
633, 62syl6bi 243 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → 𝑀 ∈ V))
64633impia 1261 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑀 ∈ V)
65 hash1snb 13207 . . 3 (𝑀 ∈ V → ((#‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6664, 65syl 17 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ((#‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6760, 66mpbird 247 1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (#‘𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916  Vcvv 3200  {csn 4177  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291   repeatS creps 13298   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-reps 13306  df-csh 13535
This theorem is referenced by:  cshwshash  15811
  Copyright terms: Public domain W3C validator