![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
Ref | Expression |
---|---|
nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl3.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
4 | 1, 3 | mt2d 131 | 1 ⊢ (𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con2i 134 nsyl 135 cesare 2569 cesaro 2573 pwnss 4830 reusv2lem2 4869 reusv2lem2OLD 4870 reldmtpos 7360 tz7.49 7540 omopthlem2 7736 domnsym 8086 sdomirr 8097 infensuc 8138 fofinf1o 8241 elfi2 8320 infdifsn 8554 carden2b 8793 alephsucdom 8902 infdif2 9032 fin4i 9120 bitsf1 15168 pcmpt2 15597 ufinffr 21733 eldmgm 24748 lgamucov 24764 facgam 24792 chtub 24937 lfgrnloop 26020 umgredgnlp 26042 eupth2lem1 27078 oddpwdc 30416 bnj1312 31126 erdszelem10 31182 heiborlem1 33610 osumcllem4N 35245 pexmidlem1N 35256 fphpd 37380 0nodd 41810 |
Copyright terms: Public domain | W3C validator |