| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv2lem2OLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of reusv2lem2 4869 as of 7-Aug-2021. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| reusv2lem2OLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eunex 4859 |
. . . . 5
| |
| 2 | exnal 1754 |
. . . . 5
| |
| 3 | 1, 2 | sylib 208 |
. . . 4
|
| 4 | rzal 4073 |
. . . . 5
| |
| 5 | 4 | alrimiv 1855 |
. . . 4
|
| 6 | 3, 5 | nsyl3 133 |
. . 3
|
| 7 | 6 | pm2.21d 118 |
. 2
|
| 8 | simpr 477 |
. . . 4
| |
| 9 | euex 2494 |
. . . . . . 7
| |
| 10 | eqeq1 2626 |
. . . . . . . . 9
| |
| 11 | 10 | ralbidv 2986 |
. . . . . . . 8
|
| 12 | 11 | cbvexv 2275 |
. . . . . . 7
|
| 13 | 9, 12 | sylib 208 |
. . . . . 6
|
| 14 | nfv 1843 |
. . . . . . . . . . . 12
| |
| 15 | nfra1 2941 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | nfan 1828 |
. . . . . . . . . . 11
|
| 17 | nfra1 2941 |
. . . . . . . . . . 11
| |
| 18 | simprr 796 |
. . . . . . . . . . . . . 14
| |
| 19 | rspa 2930 |
. . . . . . . . . . . . . . 15
| |
| 20 | 19 | ad2ant2lr 784 |
. . . . . . . . . . . . . 14
|
| 21 | 18, 20 | eqtr4d 2659 |
. . . . . . . . . . . . 13
|
| 22 | simplr 792 |
. . . . . . . . . . . . . 14
| |
| 23 | 22, 11 | syl5ibrcom 237 |
. . . . . . . . . . . . 13
|
| 24 | 21, 23 | mpd 15 |
. . . . . . . . . . . 12
|
| 25 | 24 | exp32 631 |
. . . . . . . . . . 11
|
| 26 | 16, 17, 25 | rexlimd 3026 |
. . . . . . . . . 10
|
| 27 | r19.2z 4060 |
. . . . . . . . . . . 12
| |
| 28 | 27 | ex 450 |
. . . . . . . . . . 11
|
| 29 | 28 | adantr 481 |
. . . . . . . . . 10
|
| 30 | 26, 29 | impbid 202 |
. . . . . . . . 9
|
| 31 | 30 | eubidv 2490 |
. . . . . . . 8
|
| 32 | 31 | ex 450 |
. . . . . . 7
|
| 33 | 32 | exlimdv 1861 |
. . . . . 6
|
| 34 | 13, 33 | syl5 34 |
. . . . 5
|
| 35 | 34 | imp 445 |
. . . 4
|
| 36 | 8, 35 | mpbird 247 |
. . 3
|
| 37 | 36 | ex 450 |
. 2
|
| 38 | 7, 37 | pm2.61ine 2877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |