Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovfvfvd Structured version   Visualization version   GIF version

Theorem rfovfvfvd 38297
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovfvd.r (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
rfovfvd.f 𝐹 = (𝐴𝑂𝐵)
rfovfvfvd.x (𝜑𝑋𝐴)
rfovfvfvd.g 𝐺 = (𝐹𝑅)
Assertion
Ref Expression
rfovfvfvd (𝜑 → (𝐺𝑋) = {𝑦𝐵𝑋𝑅𝑦})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑥,𝑋,𝑦   𝜑,𝑎,𝑏,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑎,𝑏)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑋(𝑟,𝑎,𝑏)

Proof of Theorem rfovfvfvd
StepHypRef Expression
1 rfovfvfvd.g . . 3 𝐺 = (𝐹𝑅)
2 rfovd.rf . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
3 rfovd.a . . . 4 (𝜑𝐴𝑉)
4 rfovd.b . . . 4 (𝜑𝐵𝑊)
5 rfovfvd.r . . . 4 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
6 rfovfvd.f . . . 4 𝐹 = (𝐴𝑂𝐵)
72, 3, 4, 5, 6rfovfvd 38296 . . 3 (𝜑 → (𝐹𝑅) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
81, 7syl5eq 2668 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
9 breq1 4656 . . . 4 (𝑥 = 𝑋 → (𝑥𝑅𝑦𝑋𝑅𝑦))
109rabbidv 3189 . . 3 (𝑥 = 𝑋 → {𝑦𝐵𝑥𝑅𝑦} = {𝑦𝐵𝑋𝑅𝑦})
1110adantl 482 . 2 ((𝜑𝑥 = 𝑋) → {𝑦𝐵𝑥𝑅𝑦} = {𝑦𝐵𝑋𝑅𝑦})
12 rfovfvfvd.x . 2 (𝜑𝑋𝐴)
13 rabexg 4812 . . 3 (𝐵𝑊 → {𝑦𝐵𝑋𝑅𝑦} ∈ V)
144, 13syl 17 . 2 (𝜑 → {𝑦𝐵𝑋𝑅𝑦} ∈ V)
158, 11, 12, 14fvmptd 6288 1 (𝜑 → (𝐺𝑋) = {𝑦𝐵𝑋𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator