MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotacl2 Structured version   Visualization version   GIF version

Theorem riotacl2 6624
Description: Membership law for "the unique element in 𝐴 such that 𝜑."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

Assertion
Ref Expression
riotacl2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})

Proof of Theorem riotacl2
StepHypRef Expression
1 df-reu 2919 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotacl 5874 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 207 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 6611 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 2921 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
63, 4, 53eltr4g 2718 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  ∃!weu 2470  {cab 2608  ∃!wreu 2914  {crab 2916  cio 5849  crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-riota 6611
This theorem is referenced by:  riotacl  6625  riotasbc  6626  riotaxfrd  6642  supub  8365  suplub  8366  ordtypelem3  8425  catlid  16344  catrid  16345  grplinv  17468  pj1id  18112  evlsval2  19520  ig1pval3  23934  coelem  23982  quotlem  24055  mircgr  25552  mirbtwn  25553  grpoidinv2  27369  grpoinv  27379  cnlnadjlem5  28930  cvmsiota  31259  cvmliftiota  31283  mpaalem  37722  disjinfi  39380
  Copyright terms: Public domain W3C validator