MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotlem Structured version   Visualization version   GIF version

Theorem quotlem 24055
Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
quotlem.8 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
Assertion
Ref Expression
quotlem (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem quotlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . 5 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plydiv.g . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plydiv.z . . . . 5 (𝜑𝐺 ≠ 0𝑝)
4 eqid 2622 . . . . . 6 (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
54quotval 24047 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
61, 2, 3, 5syl3anc 1326 . . . 4 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
7 plydiv.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8 plydiv.tm . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9 plydiv.rc . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
10 plydiv.m1 . . . . . . 7 (𝜑 → -1 ∈ 𝑆)
117, 8, 9, 10, 1, 2, 3, 4plydivalg 24054 . . . . . 6 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
12 reurex 3160 . . . . . 6 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
1311, 12syl 17 . . . . 5 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
14 addcl 10018 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1514adantl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
16 mulcl 10020 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1716adantl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
18 reccl 10692 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1918adantl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
20 neg1cn 11124 . . . . . . 7 -1 ∈ ℂ
2120a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
22 plyssc 23956 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2322, 1sseldi 3601 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
2422, 2sseldi 3601 . . . . . 6 (𝜑𝐺 ∈ (Poly‘ℂ))
2515, 17, 19, 21, 23, 24, 3, 4plydivalg 24054 . . . . 5 (𝜑 → ∃!𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
26 id 22 . . . . . . 7 (((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
2726rgenw 2924 . . . . . 6 𝑞 ∈ (Poly‘𝑆)(((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
28 riotass2 6638 . . . . . 6 ((((Poly‘𝑆) ⊆ (Poly‘ℂ) ∧ ∀𝑞 ∈ (Poly‘𝑆)(((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) ∧ (∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
2922, 27, 28mpanl12 718 . . . . 5 ((∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
3013, 25, 29syl2anc 693 . . . 4 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
316, 30eqtr4d 2659 . . 3 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
32 riotacl2 6624 . . . 4 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))})
3311, 32syl 17 . . 3 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))})
3431, 33eqeltrd 2701 . 2 (𝜑 → (𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))})
35 oveq2 6658 . . . . . . 7 (𝑞 = (𝐹 quot 𝐺) → (𝐺𝑓 · 𝑞) = (𝐺𝑓 · (𝐹 quot 𝐺)))
3635oveq2d 6666 . . . . . 6 (𝑞 = (𝐹 quot 𝐺) → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))))
37 quotlem.8 . . . . . 6 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
3836, 37syl6eqr 2674 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 𝑅)
3938eqeq1d 2624 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝𝑅 = 0𝑝))
4038fveq2d 6195 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) = (deg‘𝑅))
4140breq1d 4663 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
4239, 41orbi12d 746 . . 3 (𝑞 = (𝐹 quot 𝐺) → (((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4342elrab 3363 . 2 ((𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))} ↔ ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4434, 43sylib 208 1 (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916  wss 3574   class class class wbr 4653  cfv 5888  crio 6610  (class class class)co 6650  𝑓 cof 6895  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266  -cneg 10267   / cdiv 10684  0𝑝c0p 23436  Polycply 23940  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  quotcl  24056  quotdgr  24058
  Copyright terms: Public domain W3C validator