| Step | Hyp | Ref
| Expression |
| 1 | | csbeq1 3536 |
. . . 4
⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑)) |
| 2 | | dfsbcq2 3438 |
. . . . 5
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 3 | 2 | riotabidv 6613 |
. . . 4
⊢ (𝑧 = 𝐴 → (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | eqeq12d 2637 |
. . 3
⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑))) |
| 5 | | vex 3203 |
. . . 4
⊢ 𝑧 ∈ V |
| 6 | | nfs1v 2437 |
. . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 7 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑥𝐵 |
| 8 | 6, 7 | nfriota 6620 |
. . . 4
⊢
Ⅎ𝑥(℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 9 | | sbequ12 2111 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 10 | 9 | riotabidv 6613 |
. . . 4
⊢ (𝑥 = 𝑧 → (℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
| 11 | 5, 8, 10 | csbief 3558 |
. . 3
⊢
⦋𝑧 /
𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 12 | 4, 11 | vtoclg 3266 |
. 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 13 | | csbprc 3980 |
. . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = ∅) |
| 14 | | df-riota 6611 |
. . . 4
⊢
(℩𝑦
∈ 𝐵 [𝐴 / 𝑥]𝜑) = (℩𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| 15 | | euex 2494 |
. . . . . . 7
⊢
(∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| 16 | | sbcex 3445 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| 17 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V) |
| 18 | 17 | exlimiv 1858 |
. . . . . . 7
⊢
(∃𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V) |
| 19 | 15, 18 | syl 17 |
. . . . . 6
⊢
(∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V) |
| 20 | 19 | con3i 150 |
. . . . 5
⊢ (¬
𝐴 ∈ V → ¬
∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| 21 | | iotanul 5866 |
. . . . 5
⊢ (¬
∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → (℩𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) = ∅) |
| 22 | 20, 21 | syl 17 |
. . . 4
⊢ (¬
𝐴 ∈ V →
(℩𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) = ∅) |
| 23 | 14, 22 | syl5req 2669 |
. . 3
⊢ (¬
𝐴 ∈ V → ∅ =
(℩𝑦 ∈
𝐵 [𝐴 / 𝑥]𝜑)) |
| 24 | 13, 23 | eqtrd 2656 |
. 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 25 | 12, 24 | pm2.61i 176 |
1
⊢
⦋𝐴 /
𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |