Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjinfi Structured version   Visualization version   GIF version

Theorem disjinfi 39380
Description: Only a finite number of disjoint sets can have a non empty intersection with a finite set 𝐶 (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjinfi.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjinfi.d (𝜑Disj 𝑥𝐴 𝐵)
disjinfi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
disjinfi (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjinfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjinfi.c . . 3 (𝜑𝐶 ∈ Fin)
2 id 22 . . . 4 (𝐶 ∈ Fin → 𝐶 ∈ Fin)
3 inss2 3834 . . . . 5 ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶
43a1i 11 . . . 4 (𝐶 ∈ Fin → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
5 ssfi 8180 . . . 4 ((𝐶 ∈ Fin ∧ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
62, 4, 5syl2anc 693 . . 3 (𝐶 ∈ Fin → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
71, 6syl 17 . 2 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin)
83a1i 11 . . . . 5 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶)
98, 1jca 554 . . . 4 (𝜑 → (( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶𝐶 ∈ Fin))
10 ssexg 4804 . . . 4 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ⊆ 𝐶𝐶 ∈ Fin) → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
119, 10syl 17 . . 3 (𝜑 → ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V)
12 elinel1 3799 . . . . . . . . . . . . 13 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦 ran (𝑥𝐴𝐵))
13 eluni2 4440 . . . . . . . . . . . . . . 15 (𝑦 ran (𝑥𝐴𝐵) ↔ ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
1413biimpi 206 . . . . . . . . . . . . . 14 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤)
15 vex 3203 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
16 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1716elrnmpt 5372 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
1815, 17ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
1918biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
2019adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑤 = 𝐵)
21 nfcv 2764 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑤
22 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
2322nfrn 5368 . . . . . . . . . . . . . . . . . . . . 21 𝑥ran (𝑥𝐴𝐵)
2421, 23nfel 2777 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑤 ∈ ran (𝑥𝐴𝐵)
25 nfv 1843 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑦𝑤
2624, 25nfan 1828 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤)
27 simpl 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝑤)
28 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤𝑤 = 𝐵) → 𝑤 = 𝐵)
2927, 28eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝑤𝑤 = 𝐵) → 𝑦𝐵)
3029ex 450 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑤 → (𝑤 = 𝐵𝑦𝐵))
3130a1d 25 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑤 → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
3231adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (𝑥𝐴 → (𝑤 = 𝐵𝑦𝐵)))
3326, 32reximdai 3012 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝑦𝐵))
3420, 33mpd 15 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ran (𝑥𝐴𝐵) ∧ 𝑦𝑤) → ∃𝑥𝐴 𝑦𝐵)
3534ex 450 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
3635a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ran (𝑥𝐴𝐵) → (𝑤 ∈ ran (𝑥𝐴𝐵) → (𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵)))
3736rexlimdv 3030 . . . . . . . . . . . . . 14 (𝑦 ran (𝑥𝐴𝐵) → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑦𝑤 → ∃𝑥𝐴 𝑦𝐵))
3814, 37mpd 15 . . . . . . . . . . . . 13 (𝑦 ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑦𝐵)
3912, 38syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → ∃𝑥𝐴 𝑦𝐵)
4039adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦𝐵)
41 nfv 1843 . . . . . . . . . . . . 13 𝑥𝜑
42 nfcv 2764 . . . . . . . . . . . . . 14 𝑥𝑦
4323nfuni 4442 . . . . . . . . . . . . . . 15 𝑥 ran (𝑥𝐴𝐵)
44 nfcv 2764 . . . . . . . . . . . . . . 15 𝑥𝐶
4543, 44nfin 3820 . . . . . . . . . . . . . 14 𝑥( ran (𝑥𝐴𝐵) ∩ 𝐶)
4642, 45nfel 2777 . . . . . . . . . . . . 13 𝑥 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)
4741, 46nfan 1828 . . . . . . . . . . . 12 𝑥(𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
48 nfre1 3005 . . . . . . . . . . . 12 𝑥𝑥𝐴 𝑦 ∈ (𝐵𝐶)
493sseli 3599 . . . . . . . . . . . . . 14 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → 𝑦𝐶)
50 simp2 1062 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑥𝐴)
51 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐶𝑦𝐵) → 𝑦𝐵)
52 simpl 473 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐶𝑦𝐵) → 𝑦𝐶)
5351, 52elind 3798 . . . . . . . . . . . . . . . . 17 ((𝑦𝐶𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
54533adant2 1080 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑥𝐴𝑦𝐵) → 𝑦 ∈ (𝐵𝐶))
55 rspe 3003 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
5650, 54, 55syl2anc 693 . . . . . . . . . . . . . . 15 ((𝑦𝐶𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
57563exp 1264 . . . . . . . . . . . . . 14 (𝑦𝐶 → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5849, 57syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
5958adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
6047, 48, 59rexlimd 3026 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
6140, 60mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
62 disjinfi.d . . . . . . . . . . . . . . . . . . . . 21 (𝜑Disj 𝑥𝐴 𝐵)
63 disjors 4635 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
6462, 63sylib 208 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
65 nfv 1843 . . . . . . . . . . . . . . . . . . . . 21 𝑧𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅)
66 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝐴
67 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑧 = 𝑤
68 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝑧 / 𝑥𝐵
6921nfcsb1 3548 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝑤 / 𝑥𝐵
7068, 69nfin 3820 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵)
71 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥
7270, 71nfeq 2776 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅
7367, 72nfor 1834 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
7466, 73nfral 2945 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)
75 equequ1 1952 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
76 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
7776ineq1d 3813 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝐵𝑤 / 𝑥𝐵) = (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵))
7877eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((𝐵𝑤 / 𝑥𝐵) = ∅ ↔ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
7975, 78orbi12d 746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
8079ralbidv 2986 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅)))
8165, 74, 80cbvral 3167 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧 = 𝑤 ∨ (𝑧 / 𝑥𝐵𝑤 / 𝑥𝐵) = ∅))
8264, 81sylibr 224 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
83 rspa 2930 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝐴𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
8482, 83sylan 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
8584adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
86 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → 𝑤𝐴)
87 rspa 2930 . . . . . . . . . . . . . . . . . 18 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅))
8887orcomd 403 . . . . . . . . . . . . . . . . 17 ((∀𝑤𝐴 (𝑥 = 𝑤 ∨ (𝐵𝑤 / 𝑥𝐵) = ∅) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
8985, 86, 88syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
9089adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑤𝐴) ∧ (𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))) → ((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤))
91 elinel1 3799 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐵𝐶) → 𝑦𝐵)
9291adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑦𝐵)
93 sbsbc 3439 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))
94 sbcel2 3989 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑤 / 𝑥(𝐵𝐶))
95 csbin 4010 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤 / 𝑥(𝐵𝐶) = (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶)
9695eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑤 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
9793, 94, 963bitri 286 . . . . . . . . . . . . . . . . . . . . 21 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
9897biimpi 206 . . . . . . . . . . . . . . . . . . . 20 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶))
99 elinel1 3799 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑤 / 𝑥𝐵𝑤 / 𝑥𝐶) → 𝑦𝑤 / 𝑥𝐵)
10098, 99syl 17 . . . . . . . . . . . . . . . . . . 19 ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
101100adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
10292, 101jca 554 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → (𝑦𝐵𝑦𝑤 / 𝑥𝐵))
103 inelcm 4032 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → (𝐵𝑤 / 𝑥𝐵) ≠ ∅)
104103neneqd 2799 . . . . . . . . . . . . . . . . 17 ((𝑦𝐵𝑦𝑤 / 𝑥𝐵) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
105102, 104syl 17 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
106105adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑤𝐴) ∧ (𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))) → ¬ (𝐵𝑤 / 𝑥𝐵) = ∅)
107 pm2.53 388 . . . . . . . . . . . . . . 15 (((𝐵𝑤 / 𝑥𝐵) = ∅ ∨ 𝑥 = 𝑤) → (¬ (𝐵𝑤 / 𝑥𝐵) = ∅ → 𝑥 = 𝑤))
10890, 106, 107sylc 65 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤𝐴) ∧ (𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶))) → 𝑥 = 𝑤)
109108ex 450 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
110109ralrimiva 2966 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
111110ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
112111adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤))
11361, 112jca 554 . . . . . . . . 9 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
114 reu2 3394 . . . . . . . . 9 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ∧ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤)))
115113, 114sylibr 224 . . . . . . . 8 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶))
116 riotacl2 6624 . . . . . . . 8 (∃!𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
117115, 116syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)})
118 nfriota1 6618 . . . . . . . . . . . 12 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶))
119118nfcsb1 3548 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵
120119, 44nfin 3820 . . . . . . . . . . . . 13 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
12142, 120nfel 2777 . . . . . . . . . . . 12 𝑥 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)
122 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → 𝐵 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵)
123122ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝐵𝐶) = ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
124123eleq2d 2687 . . . . . . . . . . . 12 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
125118, 66, 121, 124elrabf 3360 . . . . . . . . . . 11 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
126125biimpi 206 . . . . . . . . . 10 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶)))
127126simpld 475 . . . . . . . . 9 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴)
128126simprd 479 . . . . . . . . . 10 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → 𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶))
129 ne0i 3921 . . . . . . . . . 10 (𝑦 ∈ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅)
130128, 129syl 17 . . . . . . . . 9 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅)
131127, 130jca 554 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
132120, 71nfne 2894 . . . . . . . . 9 𝑥((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅
133123neeq1d 2853 . . . . . . . . 9 (𝑥 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) → ((𝐵𝐶) ≠ ∅ ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
134118, 66, 132, 133elrabf 3360 . . . . . . . 8 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ 𝐴 ∧ ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) / 𝑥𝐵𝐶) ≠ ∅))
135131, 134sylibr 224 . . . . . . 7 ((𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴𝑦 ∈ (𝐵𝐶)} → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
136117, 135syl 17 . . . . . 6 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
137136ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
13869, 44nfin 3820 . . . . . . . . . . . . 13 𝑥(𝑤 / 𝑥𝐵𝐶)
139138, 71nfne 2894 . . . . . . . . . . . 12 𝑥(𝑤 / 𝑥𝐵𝐶) ≠ ∅
140 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
141140ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐵𝐶) = (𝑤 / 𝑥𝐵𝐶))
142141neeq1d 2853 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝐵𝐶) ≠ ∅ ↔ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
14321, 66, 139, 142elrabf 3360 . . . . . . . . . . 11 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (𝑤𝐴 ∧ (𝑤 / 𝑥𝐵𝐶) ≠ ∅))
144143simprbi 480 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → (𝑤 / 𝑥𝐵𝐶) ≠ ∅)
145 n0 3931 . . . . . . . . . 10 ((𝑤 / 𝑥𝐵𝐶) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
146144, 145sylib 208 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
147146adantl 482 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
148 nfv 1843 . . . . . . . . 9 𝑦(𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
149 simpl 473 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → 𝜑)
150143simplbi 476 . . . . . . . . . . 11 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → 𝑤𝐴)
151150adantl 482 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → 𝑤𝐴)
152 elinel1 3799 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝑤 / 𝑥𝐵)
153152adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝑤 / 𝑥𝐵)
154 simplr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤𝐴)
155 nfv 1843 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑤𝐴)
156 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑉
15769, 156nfel 2777 . . . . . . . . . . . . . . . . . . 19 𝑥𝑤 / 𝑥𝐵𝑉
158155, 157nfim 1825 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
159 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
160159anbi2d 740 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → ((𝜑𝑥𝐴) ↔ (𝜑𝑤𝐴)))
161140eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝐵𝑉𝑤 / 𝑥𝐵𝑉))
162160, 161imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)))
163 disjinfi.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵𝑉)
164158, 162, 163chvar 2262 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝐴) → 𝑤 / 𝑥𝐵𝑉)
165164adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵𝑉)
166 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑤𝐴𝑤 / 𝑥𝐵)
167166elrnmpt1 5374 . . . . . . . . . . . . . . . 16 ((𝑤𝐴𝑤 / 𝑥𝐵𝑉) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
168154, 165, 167syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑤𝐴𝑤 / 𝑥𝐵))
169 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑤𝐵
170140equcoms 1947 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥𝐵 = 𝑤 / 𝑥𝐵)
171170eqcomd 2628 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥𝑤 / 𝑥𝐵 = 𝐵)
17269, 169, 171cbvmpt 4749 . . . . . . . . . . . . . . . 16 (𝑤𝐴𝑤 / 𝑥𝐵) = (𝑥𝐴𝐵)
173172rneqi 5352 . . . . . . . . . . . . . . 15 ran (𝑤𝐴𝑤 / 𝑥𝐵) = ran (𝑥𝐴𝐵)
174168, 173syl6eleq 2711 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵))
175 elunii 4441 . . . . . . . . . . . . . 14 ((𝑦𝑤 / 𝑥𝐵𝑤 / 𝑥𝐵 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ran (𝑥𝐴𝐵))
176153, 174, 175syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ran (𝑥𝐴𝐵))
177 elinel2 3800 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → 𝑦𝐶)
178177adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦𝐶)
179176, 178elind 3798 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
180 nfv 1843 . . . . . . . . . . . . . . 15 𝑤 𝑦 ∈ (𝐵𝐶)
18142, 138nfel 2777 . . . . . . . . . . . . . . 15 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)
182141eleq2d 2687 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
183180, 181, 182cbvriota 6621 . . . . . . . . . . . . . 14 (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
184183a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) = (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
185 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
186154, 185jca 554 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
187 rspe 3003 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
188187adantll 750 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
189 simpll 790 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝜑)
190 sbequ 2376 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
191 sbsbc 3439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶))
192191a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ [𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶)))
193 sbcel2 3989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦𝑧 / 𝑥(𝐵𝐶))
194 csbin 4010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶)
195 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 ∈ V
196 csbconstg 3546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ V → 𝑧 / 𝑥𝐶 = 𝐶)
197195, 196ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 / 𝑥𝐶 = 𝐶
198197ineq2i 3811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 / 𝑥𝐵𝑧 / 𝑥𝐶) = (𝑧 / 𝑥𝐵𝐶)
199194, 198eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
200199eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑧 / 𝑥(𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
201193, 200bitri 264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
202201a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → ([𝑧 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
203190, 192, 2023bitrd 294 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑧 → ([𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)))
204203anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
205 equequ2 1953 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → (𝑥 = 𝑤𝑥 = 𝑧))
206204, 205imbi12d 334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑧 → (((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)))
207206cbvralv 3171 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
208207ralbii 2980 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧))
209 nfv 1843 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧)
21068, 44nfin 3820 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥(𝑧 / 𝑥𝐵𝐶)
21142, 210nfel 2777 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)
212181, 211nfan 1828 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
213 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤 = 𝑧
214212, 213nfim 1825 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
21566, 214nfral 2945 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)
216182anbi1d 741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑤 → ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))))
217 equequ1 1952 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
218216, 217imbi12d 334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → (((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
219218ralbidv 2986 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → (∀𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
220209, 215, 219cbvral 3167 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝐴𝑧𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑥 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
221 biid 251 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
222 sbsbc 3439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
223 sbcel2 3989 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ 𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶))
224 csbin 4010 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶)
225 csbco 3543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 / 𝑤𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
226 csbconstg 3546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ V → 𝑧 / 𝑤𝐶 = 𝐶)
227195, 226ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 / 𝑤𝐶 = 𝐶
228225, 227ineq12i 3812 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 / 𝑤𝑤 / 𝑥𝐵𝑧 / 𝑤𝐶) = (𝑧 / 𝑥𝐵𝐶)
229 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
230224, 228, 2293eqtri 2648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
231230eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑧 / 𝑤(𝑤 / 𝑥𝐵𝐶) ↔ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶))
232222, 223, 2313bitrri 287 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑧 / 𝑥𝐵𝐶) ↔ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
233232anbi2i 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) ↔ (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)))
234233imbi1i 339 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
235234ralbii 2980 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
236235ralbii 2980 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
237221, 236bitri 264 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ 𝑦 ∈ (𝑧 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
238208, 220, 2373bitri 286 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵𝐶) ∧ [𝑤 / 𝑥]𝑦 ∈ (𝐵𝐶)) → 𝑥 = 𝑤) ↔ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
239112, 238sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
240189, 179, 239syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧))
241188, 240jca 554 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
242 reu2 3394 . . . . . . . . . . . . . . . 16 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ↔ (∃𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ ∀𝑤𝐴𝑧𝐴 ((𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) ∧ [𝑧 / 𝑤]𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = 𝑧)))
243241, 242sylibr 224 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶))
244 riota1 6629 . . . . . . . . . . . . . . 15 (∃!𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
245243, 244syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → ((𝑤𝐴𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) ↔ (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤))
246186, 245mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑤𝐴 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) = 𝑤)
247184, 246eqtr2d 2657 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
248179, 247jca 554 . . . . . . . . . . 11 (((𝜑𝑤𝐴) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶)) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
249248ex 450 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
250149, 151, 249syl2anc 693 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
251148, 250eximd 2085 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → (∃𝑦 𝑦 ∈ (𝑤 / 𝑥𝐵𝐶) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))))
252147, 251mpd 15 . . . . . . 7 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
253 df-rex 2918 . . . . . . 7 (∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ↔ ∃𝑦(𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ∧ 𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
254252, 253sylibr 224 . . . . . 6 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}) → ∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
255254ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
256137, 255jca 554 . . . 4 (𝜑 → (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
257 eqid 2622 . . . . 5 (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))) = (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
258257fompt 39379 . . . 4 ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ↔ (∀𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)(𝑥𝐴 𝑦 ∈ (𝐵𝐶)) ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅}∃𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶)𝑤 = (𝑥𝐴 𝑦 ∈ (𝐵𝐶))))
259256, 258sylibr 224 . . 3 (𝜑 → (𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅})
260 fodomg 9345 . . 3 (( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ V → ((𝑦 ∈ ( ran (𝑥𝐴𝐵) ∩ 𝐶) ↦ (𝑥𝐴 𝑦 ∈ (𝐵𝐶))):( ran (𝑥𝐴𝐵) ∩ 𝐶)–onto→{𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)))
26111, 259, 260sylc 65 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶))
262 domfi 8181 . 2 ((( ran (𝑥𝐴𝐵) ∩ 𝐶) ∈ Fin ∧ {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ≼ ( ran (𝑥𝐴𝐵) ∩ 𝐶)) → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
2637, 261, 262syl2anc 693 1 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐶) ≠ ∅} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  [wsb 1880  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916  Vcvv 3200  [wsbc 3435  csb 3533  cin 3573  wss 3574  c0 3915   cuni 4436  Disj wdisj 4620   class class class wbr 4653  cmpt 4729  ran crn 5115  ontowfo 5886  crio 6610  cdom 7953  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  fsumiunss  39807  sge0iunmptlemre  40632
  Copyright terms: Public domain W3C validator