| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv2s | Structured version Visualization version Unicode version | ||
| Description: The value of description
binder |
| Ref | Expression |
|---|---|
| riotasv2s.2 |
|
| Ref | Expression |
|---|---|
| riotasv2s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1060 |
. 2
| |
| 2 | simp1 1061 |
. 2
| |
| 3 | riotasv2s.2 |
. . . . . 6
| |
| 4 | nfra1 2941 |
. . . . . . 7
| |
| 5 | nfcv 2764 |
. . . . . . 7
| |
| 6 | 4, 5 | nfriota 6620 |
. . . . . 6
|
| 7 | 3, 6 | nfcxfr 2762 |
. . . . 5
|
| 8 | 7 | nfel1 2779 |
. . . 4
|
| 9 | nfv 1843 |
. . . . 5
| |
| 10 | nfsbc1v 3455 |
. . . . 5
| |
| 11 | 9, 10 | nfan 1828 |
. . . 4
|
| 12 | 8, 11 | nfan 1828 |
. . 3
|
| 13 | nfcsb1v 3549 |
. . . 4
| |
| 14 | 13 | a1i 11 |
. . 3
|
| 15 | 10 | a1i 11 |
. . 3
|
| 16 | 3 | a1i 11 |
. . 3
|
| 17 | sbceq1a 3446 |
. . . 4
| |
| 18 | 17 | adantl 482 |
. . 3
|
| 19 | csbeq1a 3542 |
. . . 4
| |
| 20 | 19 | adantl 482 |
. . 3
|
| 21 | simpl 473 |
. . 3
| |
| 22 | simprl 794 |
. . 3
| |
| 23 | simprr 796 |
. . 3
| |
| 24 | 12, 14, 15, 16, 18, 20, 21, 22, 23 | riotasv2d 34243 |
. 2
|
| 25 | 1, 2, 24 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-undef 7399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |