MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi Structured version   Visualization version   GIF version

Theorem rlimi 14244
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimi (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rlimi.2 . 2 (𝜑𝑅 ∈ ℝ+)
2 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
3 rlimf 14232 . . . . . . 7 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
5 rlimi.1 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
6 eqid 2622 . . . . . . . . . 10 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
76fmpt 6381 . . . . . . . . 9 (∀𝑧𝐴 𝐵𝑉 ↔ (𝑧𝐴𝐵):𝐴𝑉)
85, 7sylib 208 . . . . . . . 8 (𝜑 → (𝑧𝐴𝐵):𝐴𝑉)
9 fdm 6051 . . . . . . . 8 ((𝑧𝐴𝐵):𝐴𝑉 → dom (𝑧𝐴𝐵) = 𝐴)
108, 9syl 17 . . . . . . 7 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
1110feq2d 6031 . . . . . 6 (𝜑 → ((𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ))
124, 11mpbid 222 . . . . 5 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
136fmpt 6381 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
1412, 13sylibr 224 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
15 rlimss 14233 . . . . . 6 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
162, 15syl 17 . . . . 5 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
1710, 16eqsstr3d 3640 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rlimcl 14234 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
192, 18syl 17 . . . 4 (𝜑𝐶 ∈ ℂ)
2014, 17, 19rlim2 14227 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
212, 20mpbid 222 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
22 breq2 4657 . . . . 5 (𝑥 = 𝑅 → ((abs‘(𝐵𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑅))
2322imbi2d 330 . . . 4 (𝑥 = 𝑅 → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
2423rexralbidv 3058 . . 3 (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
2524rspcv 3305 . 2 (𝑅 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
261, 21, 25sylc 65 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   < clt 10074  cle 10075  cmin 10266  +crp 11832  abscabs 13974  𝑟 crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-rlim 14220
This theorem is referenced by:  rlimi2  14245  rlimclim1  14276  rlimuni  14281  rlimcld2  14309  rlimcn1  14319  rlimcn2  14321  rlimo1  14347  o1rlimmul  14349  rlimno1  14384  xrlimcnp  24695  rlimcxp  24700  chtppilimlem2  25163  dchrisumlem3  25180
  Copyright terms: Public domain W3C validator