| Step | Hyp | Ref
| Expression |
| 1 | | rlim2.1 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
| 2 | | eqid 2622 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) |
| 3 | 2 | fmpt 6381 |
. . . 4
⊢
(∀𝑧 ∈
𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 4 | 1, 3 | sylib 208 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 5 | | rlim2.2 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 6 | | eqidd 2623 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) = ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤)) |
| 7 | 4, 5, 6 | rlim 14226 |
. 2
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥)))) |
| 8 | | rlim2.3 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 9 | 8 | biantrurd 529 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥)))) |
| 10 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑧 𝑦 ≤ 𝑤 |
| 11 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑧abs |
| 12 | | nffvmpt1 6199 |
. . . . . . . . . 10
⊢
Ⅎ𝑧((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) |
| 13 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑧
− |
| 14 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝐶 |
| 15 | 12, 13, 14 | nfov 6676 |
. . . . . . . . 9
⊢
Ⅎ𝑧(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶) |
| 16 | 11, 15 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑧(abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) |
| 17 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑧
< |
| 18 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑧𝑥 |
| 19 | 16, 17, 18 | nfbr 4699 |
. . . . . . 7
⊢
Ⅎ𝑧(abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥 |
| 20 | 10, 19 | nfim 1825 |
. . . . . 6
⊢
Ⅎ𝑧(𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) |
| 21 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑤(𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) |
| 22 | | breq2 4657 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (𝑦 ≤ 𝑤 ↔ 𝑦 ≤ 𝑧)) |
| 23 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) = ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧)) |
| 24 | 23 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶) = (((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) |
| 25 | 24 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) = (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶))) |
| 26 | 25 | breq1d 4663 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → ((abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥 ↔ (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥)) |
| 27 | 22, 26 | imbi12d 334 |
. . . . . 6
⊢ (𝑤 = 𝑧 → ((𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥))) |
| 28 | 20, 21, 27 | cbvral 3167 |
. . . . 5
⊢
(∀𝑤 ∈
𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥)) |
| 29 | 2 | fvmpt2 6291 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) = 𝐵) |
| 30 | 29 | oveq1d 6665 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → (((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶) = (𝐵 − 𝐶)) |
| 31 | 30 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵 − 𝐶))) |
| 32 | 31 | breq1d 4663 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑥)) |
| 33 | 32 | imbi2d 330 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 34 | 33 | ralimiaa 2951 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 35 | | ralbi 3068 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 ((𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 36 | 1, 34, 35 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 37 | 28, 36 | syl5bb 272 |
. . . 4
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 38 | 37 | rexbidv 3052 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 39 | 38 | ralbidv 2986 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 40 | 7, 9, 39 | 3bitr2d 296 |
1
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |