![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidl | Structured version Visualization version GIF version |
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
rngidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngidl.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngoidl | ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3624 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋) |
3 | rngidl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | rngidl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
5 | eqid 2622 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
6 | 3, 4, 5 | rngo0cl 33718 | . 2 ⊢ (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋) |
7 | 3, 4 | rngogcl 33711 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
8 | 7 | 3expa 1265 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
9 | 8 | ralrimiva 2966 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋) |
10 | eqid 2622 | . . . . . . . . 9 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
11 | 3, 10, 4 | rngocl 33700 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
12 | 11 | 3com23 1271 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
13 | 3, 10, 4 | rngocl 33700 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋) |
14 | 12, 13 | jca 554 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
15 | 14 | 3expa 1265 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
16 | 15 | ralrimiva 2966 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
17 | 9, 16 | jca 554 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
18 | 17 | ralrimiva 2966 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
19 | 3, 10, 4, 5 | isidl 33813 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))))) |
20 | 2, 6, 18, 19 | mpbir3and 1245 | 1 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ran crn 5115 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 GIdcgi 27344 RingOpscrngo 33693 Idlcidl 33806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-1st 7168 df-2nd 7169 df-grpo 27347 df-gid 27348 df-ablo 27399 df-rngo 33694 df-idl 33809 |
This theorem is referenced by: divrngidl 33827 igenval 33860 igenidl 33862 |
Copyright terms: Public domain | W3C validator |