![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1264 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | 3imp 1256 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: 3coml 1272 syld3an2 1373 3anidm13 1384 eqreu 3398 f1ofveu 6645 curry2f 7273 dfsmo2 7444 nneob 7732 f1oeng 7974 suppr 8377 infdif 9031 axdclem2 9342 gchen1 9447 grumap 9630 grudomon 9639 mul32 10203 add32 10254 subsub23 10286 subadd23 10293 addsub12 10294 subsub 10311 subsub3 10313 sub32 10315 suble 10506 lesub 10507 ltsub23 10508 ltsub13 10509 ltleadd 10511 div32 10705 div13 10706 div12 10707 divdiv32 10733 cju 11016 infssuzle 11771 ioo0 12200 ico0 12221 ioc0 12222 icc0 12223 fzen 12358 modcyc 12705 expgt0 12893 expge0 12896 expge1 12897 2cshwcom 13562 shftval2 13815 abs3dif 14071 divalgb 15127 submrc 16288 mrieqv2d 16299 pltnlt 16968 pltn2lp 16969 tosso 17036 latnle 17085 latabs1 17087 lubel 17122 ipopos 17160 grpinvcnv 17483 mulgneg2 17575 oppgmnd 17784 oddvdsnn0 17963 oddvds 17966 odmulg 17973 odcl2 17982 lsmcomx 18259 srgrmhm 18536 ringcom 18579 mulgass2 18601 opprring 18631 irredrmul 18707 irredlmul 18708 isdrngrd 18773 islmodd 18869 lmodcom 18909 rmodislmod 18931 opprdomn 19301 zntoslem 19905 ipcl 19978 maducoevalmin1 20458 rintopn 20714 opnnei 20924 restin 20970 cnpnei 21068 cnprest 21093 ordthaus 21188 kgen2ss 21358 hausflim 21785 fclsfnflim 21831 cnpfcf 21845 opnsubg 21911 cuspcvg 22105 psmetsym 22115 xmetsym 22152 ngpdsr 22409 ngpds2r 22411 ngpds3r 22413 clmmulg 22901 cphipval2 23040 iscau2 23075 dgr1term 24016 cxpeq0 24424 cxpge0 24429 relogbzcl 24512 grpoidinvlem2 27359 grpoinvdiv 27391 nvpncan 27509 nvabs 27527 ipval2lem2 27559 dipcj 27569 diporthcom 27571 dipdi 27698 dipassr 27701 dipsubdi 27704 hlipcj 27767 hvadd32 27891 hvsub32 27902 his5 27943 hoadd32 28642 hosubsub 28676 unopf1o 28775 adj2 28793 adjvalval 28796 adjlnop 28945 leopmul2i 28994 cvntr 29151 mdsymlem5 29266 sumdmdii 29274 supxrnemnf 29534 odutos 29663 tlt2 29664 tosglblem 29669 archiabl 29752 unitdivcld 29947 bnj605 30977 bnj607 30986 gcd32 31637 cgrrflx 32094 cgrcom 32097 cgrcomr 32104 btwntriv1 32123 cgr3com 32160 colineartriv2 32175 segleantisym 32222 seglelin 32223 btwnoutside 32232 clsint2 32324 dissneqlem 33187 ftc1anclem5 33489 heibor1 33609 rngoidl 33823 ispridlc 33869 opltcon3b 34491 cmtcomlemN 34535 cmtcomN 34536 cmt3N 34538 cmtbr3N 34541 cvrval2 34561 cvrnbtwn4 34566 leatb 34579 atlrelat1 34608 hlatlej2 34662 hlateq 34685 hlrelat5N 34687 snatpsubN 35036 pmap11 35048 paddcom 35099 sspadd2 35102 paddss12 35105 cdleme51finvN 35844 cdleme51finvtrN 35846 cdlemeiota 35873 cdlemg2jlemOLDN 35881 cdlemg2klem 35883 cdlemg4b1 35897 cdlemg4b2 35898 trljco2 36029 tgrpabl 36039 tendoplcom 36070 cdleml6 36269 erngdvlem3-rN 36286 dia11N 36337 dib11N 36449 dih11 36554 nerabdioph 37373 monotoddzzfi 37507 fzneg 37549 jm2.19lem2 37557 nzss 38516 sineq0ALT 39173 lincvalsng 42205 reccot 42499 |
Copyright terms: Public domain | W3C validator |