Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0idl Structured version   Visualization version   GIF version

Theorem 0idl 33824
Description: The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
0idl.1 𝐺 = (1st𝑅)
0idl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
0idl (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))

Proof of Theorem 0idl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0idl.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2622 . . . 4 ran 𝐺 = ran 𝐺
3 0idl.2 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 33718 . . 3 (𝑅 ∈ RingOps → 𝑍 ∈ ran 𝐺)
54snssd 4340 . 2 (𝑅 ∈ RingOps → {𝑍} ⊆ ran 𝐺)
6 fvex 6201 . . . . 5 (GId‘𝐺) ∈ V
73, 6eqeltri 2697 . . . 4 𝑍 ∈ V
87snid 4208 . . 3 𝑍 ∈ {𝑍}
98a1i 11 . 2 (𝑅 ∈ RingOps → 𝑍 ∈ {𝑍})
10 velsn 4193 . . . 4 (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍)
11 velsn 4193 . . . . . . . 8 (𝑦 ∈ {𝑍} ↔ 𝑦 = 𝑍)
121, 2, 3rngo0rid 33719 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
134, 12mpdan 702 . . . . . . . . . 10 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
14 ovex 6678 . . . . . . . . . . 11 (𝑍𝐺𝑍) ∈ V
1514elsn 4192 . . . . . . . . . 10 ((𝑍𝐺𝑍) ∈ {𝑍} ↔ (𝑍𝐺𝑍) = 𝑍)
1613, 15sylibr 224 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) ∈ {𝑍})
17 oveq2 6658 . . . . . . . . . 10 (𝑦 = 𝑍 → (𝑍𝐺𝑦) = (𝑍𝐺𝑍))
1817eleq1d 2686 . . . . . . . . 9 (𝑦 = 𝑍 → ((𝑍𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑍) ∈ {𝑍}))
1916, 18syl5ibrcom 237 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑦 = 𝑍 → (𝑍𝐺𝑦) ∈ {𝑍}))
2011, 19syl5bi 232 . . . . . . 7 (𝑅 ∈ RingOps → (𝑦 ∈ {𝑍} → (𝑍𝐺𝑦) ∈ {𝑍}))
2120ralrimiv 2965 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍})
22 eqid 2622 . . . . . . . . . 10 (2nd𝑅) = (2nd𝑅)
233, 2, 1, 22rngorz 33722 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd𝑅)𝑍) = 𝑍)
24 ovex 6678 . . . . . . . . . 10 (𝑧(2nd𝑅)𝑍) ∈ V
2524elsn 4192 . . . . . . . . 9 ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ↔ (𝑧(2nd𝑅)𝑍) = 𝑍)
2623, 25sylibr 224 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd𝑅)𝑍) ∈ {𝑍})
273, 2, 1, 22rngolz 33721 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd𝑅)𝑧) = 𝑍)
28 ovex 6678 . . . . . . . . . 10 (𝑍(2nd𝑅)𝑧) ∈ V
2928elsn 4192 . . . . . . . . 9 ((𝑍(2nd𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd𝑅)𝑧) = 𝑍)
3027, 29sylibr 224 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd𝑅)𝑧) ∈ {𝑍})
3126, 30jca 554 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
3231ralrimiva 2966 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
3321, 32jca 554 . . . . 5 (𝑅 ∈ RingOps → (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
34 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑍 → (𝑥𝐺𝑦) = (𝑍𝐺𝑦))
3534eleq1d 2686 . . . . . . 7 (𝑥 = 𝑍 → ((𝑥𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑦) ∈ {𝑍}))
3635ralbidv 2986 . . . . . 6 (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ↔ ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍}))
37 oveq2 6658 . . . . . . . . 9 (𝑥 = 𝑍 → (𝑧(2nd𝑅)𝑥) = (𝑧(2nd𝑅)𝑍))
3837eleq1d 2686 . . . . . . . 8 (𝑥 = 𝑍 → ((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ↔ (𝑧(2nd𝑅)𝑍) ∈ {𝑍}))
39 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑍 → (𝑥(2nd𝑅)𝑧) = (𝑍(2nd𝑅)𝑧))
4039eleq1d 2686 . . . . . . . 8 (𝑥 = 𝑍 → ((𝑥(2nd𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
4138, 40anbi12d 747 . . . . . . 7 (𝑥 = 𝑍 → (((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
4241ralbidv 2986 . . . . . 6 (𝑥 = 𝑍 → (∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}) ↔ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
4336, 42anbi12d 747 . . . . 5 (𝑥 = 𝑍 → ((∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})) ↔ (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))))
4433, 43syl5ibrcom 237 . . . 4 (𝑅 ∈ RingOps → (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}))))
4510, 44syl5bi 232 . . 3 (𝑅 ∈ RingOps → (𝑥 ∈ {𝑍} → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}))))
4645ralrimiv 2965 . 2 (𝑅 ∈ RingOps → ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})))
471, 22, 2, 3isidl 33813 . 2 (𝑅 ∈ RingOps → ({𝑍} ∈ (Idl‘𝑅) ↔ ({𝑍} ⊆ ran 𝐺𝑍 ∈ {𝑍} ∧ ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})))))
485, 9, 46, 47mpbir3and 1245 1 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  {csn 4177  ran crn 5115  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  GIdcgi 27344  RingOpscrngo 33693  Idlcidl 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-rngo 33694  df-idl 33809
This theorem is referenced by:  0rngo  33826  divrngidl  33827  smprngopr  33851  isdmn3  33873
  Copyright terms: Public domain W3C validator