![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssbi | Structured version Visualization version GIF version |
Description: The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rnmptssbi.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssbi.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssbi.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptssbi | ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssbi.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfmpt1 4747 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | nfcxfr 2762 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
5 | 4 | nfrn 5368 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6 | nfss 3596 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐶 |
8 | 1, 7 | nfan 1828 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ran 𝐹 ⊆ 𝐶) |
9 | simplr 792 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ran 𝐹 ⊆ 𝐶) | |
10 | simpr 477 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | rnmptssbi.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | adantlr 751 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
13 | 2, 10, 12 | elrnmpt1d 39435 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran 𝐹) |
14 | 9, 13 | sseldd 3604 | . . 3 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
15 | 8, 14 | ralrimia 39315 | . 2 ⊢ ((𝜑 ∧ ran 𝐹 ⊆ 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
16 | 2 | rnmptss 6392 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
17 | 16 | adantl 482 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ran 𝐹 ⊆ 𝐶) |
18 | 15, 17 | impbida 877 | 1 ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ↦ cmpt 4729 ran crn 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
This theorem is referenced by: imassmpt 39481 |
Copyright terms: Public domain | W3C validator |