Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssbi Structured version   Visualization version   GIF version

Theorem rnmptssbi 39477
Description: The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
rnmptssbi.1 𝑥𝜑
rnmptssbi.2 𝐹 = (𝑥𝐴𝐵)
rnmptssbi.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptssbi (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptssbi
StepHypRef Expression
1 rnmptssbi.1 . . . 4 𝑥𝜑
2 rnmptssbi.2 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
3 nfmpt1 4747 . . . . . . 7 𝑥(𝑥𝐴𝐵)
42, 3nfcxfr 2762 . . . . . 6 𝑥𝐹
54nfrn 5368 . . . . 5 𝑥ran 𝐹
6 nfcv 2764 . . . . 5 𝑥𝐶
75, 6nfss 3596 . . . 4 𝑥ran 𝐹𝐶
81, 7nfan 1828 . . 3 𝑥(𝜑 ∧ ran 𝐹𝐶)
9 simplr 792 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → ran 𝐹𝐶)
10 simpr 477 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝑥𝐴)
11 rnmptssbi.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
1211adantlr 751 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝑉)
132, 10, 12elrnmpt1d 39435 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran 𝐹)
149, 13sseldd 3604 . . 3 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
158, 14ralrimia 39315 . 2 ((𝜑 ∧ ran 𝐹𝐶) → ∀𝑥𝐴 𝐵𝐶)
162rnmptss 6392 . . 3 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
1716adantl 482 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝐶) → ran 𝐹𝐶)
1815, 17impbida 877 1 (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wss 3574  cmpt 4729  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  imassmpt  39481
  Copyright terms: Public domain W3C validator