![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnfvima2 | Structured version Visualization version GIF version |
Description: Given an element of the preimage, its function value is in the image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
fnfvima2.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnfvima2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
fnfvima2.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fnfvima2 | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3834 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
2 | imass2 5501 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) |
5 | fnfvima2.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
6 | inss1 3833 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
8 | fnfvima2.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
9 | fnfvima2.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
10 | 8, 9 | elind 3798 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ∩ 𝐶)) |
11 | fnfvima 6496 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝐵 ∈ (𝐴 ∩ 𝐶)) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) | |
12 | 5, 7, 10, 11 | syl3anc 1326 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) |
13 | 4, 12 | sseldd 3604 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 “ cima 5117 Fn wfn 5883 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: limsup10exlem 40004 liminflelimsupuz 40017 |
Copyright terms: Public domain | W3C validator |