| Step | Hyp | Ref
| Expression |
| 1 | | f1od2.2 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) |
| 2 | 1 | ralrimivva 2971 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑊) |
| 3 | | f1od2.1 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 4 | 3 | fnmpt2 7238 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑊 → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) |
| 6 | | f1od2.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) |
| 7 | | opelxpi 5148 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) |
| 9 | 8 | ralrimiva 2966 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) |
| 10 | | eqid 2622 |
. . . . 5
⊢ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) = (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) |
| 11 | 10 | fnmpt 6020 |
. . . 4
⊢
(∀𝑧 ∈
𝐷 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌) → (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷) |
| 12 | 9, 11 | syl 17 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷) |
| 13 | | elxp7 7201 |
. . . . . . . 8
⊢ (𝑎 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵))) |
| 14 | 13 | anbi1i 731 |
. . . . . . 7
⊢ ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 15 | | anass 681 |
. . . . . . . . 9
⊢ (((𝑎 ∈ (V × V) ∧
((1st ‘𝑎)
∈ 𝐴 ∧
(2nd ‘𝑎)
∈ 𝐵)) ∧ 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑎 ∈ (V × V) ∧ (((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶))) |
| 16 | | f1od2.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) |
| 17 | 16 | sbcbidv 3490 |
. . . . . . . . . . . 12
⊢ (𝜑 → ([(2nd
‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(2nd
‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) |
| 18 | 17 | sbcbidv 3490 |
. . . . . . . . . . 11
⊢ (𝜑 → ([(1st
‘𝑎) / 𝑥][(2nd
‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(1st
‘𝑎) / 𝑥][(2nd
‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) |
| 19 | | sbcan 3478 |
. . . . . . . . . . . . . 14
⊢
([(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ([(2nd
‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ [(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶)) |
| 20 | | sbcan 3478 |
. . . . . . . . . . . . . . . 16
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ ([(2nd
‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵)) |
| 21 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘𝑎) ∈ V |
| 22 | | sbcg 3503 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 24 | | sbcel1v 3495 |
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵 ↔ (2nd ‘𝑎) ∈ 𝐵) |
| 25 | 23, 24 | anbi12i 733 |
. . . . . . . . . . . . . . . 16
⊢
(([(2nd ‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) |
| 26 | 20, 25 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) |
| 27 | | sbceq2g 3990 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑧 = 𝐶 ↔ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 28 | 21, 27 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶 ↔ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) |
| 29 | 26, 28 | anbi12i 733 |
. . . . . . . . . . . . . 14
⊢
(([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ [(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 30 | 19, 29 | bitri 264 |
. . . . . . . . . . . . 13
⊢
([(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 31 | 30 | sbcbii 3491 |
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(1st
‘𝑎) / 𝑥]((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 32 | | sbcan 3478 |
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥]((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ([(1st
‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ [(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 33 | | sbcan 3478 |
. . . . . . . . . . . . . 14
⊢
([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ↔ ([(1st
‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵)) |
| 34 | | sbcel1v 3495 |
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ↔ (1st ‘𝑎) ∈ 𝐴) |
| 35 | | fvex 6201 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘𝑎) ∈ V |
| 36 | | sbcg 3503 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥](2nd
‘𝑎) ∈ 𝐵 ↔ (2nd
‘𝑎) ∈ 𝐵)) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵 ↔ (2nd ‘𝑎) ∈ 𝐵) |
| 38 | 34, 37 | anbi12i 733 |
. . . . . . . . . . . . . 14
⊢
(([(1st ‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵) ↔ ((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) |
| 39 | 33, 38 | bitri 264 |
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ↔ ((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) |
| 40 | | sbceq2g 3990 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 41 | 35, 40 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) |
| 42 | 39, 41 | anbi12i 733 |
. . . . . . . . . . . 12
⊢
(([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ [(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 43 | 31, 32, 42 | 3bitri 286 |
. . . . . . . . . . 11
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) |
| 44 | | sbcan 3478 |
. . . . . . . . . . . . . 14
⊢
([(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ ([(2nd
‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ∧ [(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽))) |
| 45 | | sbcg 3503 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) |
| 46 | 21, 45 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷) |
| 47 | | sbcan 3478 |
. . . . . . . . . . . . . . . 16
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽) ↔ ([(2nd
‘𝑎) / 𝑦]𝑥 = 𝐼 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽)) |
| 48 | | sbcg 3503 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑥 = 𝐼 ↔ 𝑥 = 𝐼)) |
| 49 | 21, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑥 = 𝐼 ↔ 𝑥 = 𝐼) |
| 50 | | sbceq1g 3988 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ ⦋(2nd
‘𝑎) / 𝑦⦌𝑦 = 𝐽)) |
| 51 | 21, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ ⦋(2nd
‘𝑎) / 𝑦⦌𝑦 = 𝐽) |
| 52 | | csbvarg 4003 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑎) ∈ V →
⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = (2nd ‘𝑎)) |
| 53 | 21, 52 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = (2nd ‘𝑎) |
| 54 | 53 | eqeq1i 2627 |
. . . . . . . . . . . . . . . . . 18
⊢
(⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) |
| 55 | 51, 54 | bitri 264 |
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) |
| 56 | 49, 55 | anbi12i 733 |
. . . . . . . . . . . . . . . 16
⊢
(([(2nd ‘𝑎) / 𝑦]𝑥 = 𝐼 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽) ↔ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) |
| 57 | 47, 56 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽) ↔ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) |
| 58 | 46, 57 | anbi12i 733 |
. . . . . . . . . . . . . 14
⊢
(([(2nd ‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ∧ [(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 59 | 44, 58 | bitri 264 |
. . . . . . . . . . . . 13
⊢
([(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 60 | 59 | sbcbii 3491 |
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ [(1st
‘𝑎) / 𝑥](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 61 | | sbcan 3478 |
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) ↔ ([(1st
‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ∧ [(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 62 | | sbcg 3503 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) |
| 63 | 35, 62 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷) |
| 64 | | sbcan 3478 |
. . . . . . . . . . . . . 14
⊢
([(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽) ↔ ([(1st
‘𝑎) / 𝑥]𝑥 = 𝐼 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽)) |
| 65 | | sbceq1g 3988 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ ⦋(1st
‘𝑎) / 𝑥⦌𝑥 = 𝐼)) |
| 66 | 35, 65 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ ⦋(1st
‘𝑎) / 𝑥⦌𝑥 = 𝐼) |
| 67 | | csbvarg 4003 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑎) ∈ V →
⦋(1st ‘𝑎) / 𝑥⦌𝑥 = (1st ‘𝑎)) |
| 68 | 35, 67 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
⦋(1st ‘𝑎) / 𝑥⦌𝑥 = (1st ‘𝑎) |
| 69 | 68 | eqeq1i 2627 |
. . . . . . . . . . . . . . . 16
⊢
(⦋(1st ‘𝑎) / 𝑥⦌𝑥 = 𝐼 ↔ (1st ‘𝑎) = 𝐼) |
| 70 | 66, 69 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ (1st ‘𝑎) = 𝐼) |
| 71 | | sbcg 3503 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥](2nd
‘𝑎) = 𝐽 ↔ (2nd
‘𝑎) = 𝐽)) |
| 72 | 35, 71 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) |
| 73 | 70, 72 | anbi12i 733 |
. . . . . . . . . . . . . 14
⊢
(([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽) ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) |
| 74 | 64, 73 | bitri 264 |
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽) ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) |
| 75 | 63, 74 | anbi12i 733 |
. . . . . . . . . . . 12
⊢
(([(1st ‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ∧ [(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 76 | 60, 61, 75 | 3bitri 286 |
. . . . . . . . . . 11
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 77 | 18, 43, 76 | 3bitr3g 302 |
. . . . . . . . . 10
⊢ (𝜑 → ((((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) |
| 78 | 77 | anbi2d 740 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑎 ∈ (V × V) ∧ (((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))))) |
| 79 | 15, 78 | syl5bb 272 |
. . . . . . . 8
⊢ (𝜑 → (((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))))) |
| 80 | | xpss 5226 |
. . . . . . . . . . . 12
⊢ (𝑋 × 𝑌) ⊆ (V × V) |
| 81 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 = 〈𝐼, 𝐽〉) |
| 82 | 8 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) |
| 83 | 81, 82 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 ∈ (𝑋 × 𝑌)) |
| 84 | 80, 83 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 ∈ (V × V)) |
| 85 | 84 | ex 450 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) → 𝑎 ∈ (V × V))) |
| 86 | 85 | pm4.71rd 667 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)))) |
| 87 | | eqop 7208 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (V × V) →
(𝑎 = 〈𝐼, 𝐽〉 ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) |
| 88 | 87 | anbi2d 740 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (V × V) →
((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) |
| 89 | 88 | pm5.32i 669 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (V × V) ∧
(𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) |
| 90 | 86, 89 | syl6rbb 277 |
. . . . . . . 8
⊢ (𝜑 → ((𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) |
| 91 | 79, 90 | bitrd 268 |
. . . . . . 7
⊢ (𝜑 → (((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) |
| 92 | 14, 91 | syl5bb 272 |
. . . . . 6
⊢ (𝜑 → ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) |
| 93 | 92 | opabbidv 4716 |
. . . . 5
⊢ (𝜑 → {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} = {〈𝑧, 𝑎〉 ∣ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)}) |
| 94 | | df-mpt2 6655 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 95 | 3, 94 | eqtri 2644 |
. . . . . . 7
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 96 | 95 | cnveqi 5297 |
. . . . . 6
⊢ ◡𝐹 = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 97 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑎 ∈ (𝐴 × 𝐵) |
| 98 | | nfcsb1v 3549 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 |
| 99 | 98 | nfeq2 2780 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 |
| 100 | 97, 99 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) |
| 101 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑎 ∈ (𝐴 × 𝐵) |
| 102 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(1st ‘𝑎) |
| 103 | | nfcsb1v 3549 |
. . . . . . . . . 10
⊢
Ⅎ𝑦⦋(2nd ‘𝑎) / 𝑦⦌𝐶 |
| 104 | 102, 103 | nfcsb 3551 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 |
| 105 | 104 | nfeq2 2780 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 |
| 106 | 101, 105 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) |
| 107 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑎 ∈ (𝐴 × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) |
| 108 | | opelxp 5146 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 109 | 107, 108 | syl6bb 276 |
. . . . . . . 8
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑎 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 110 | | csbopeq1a 7221 |
. . . . . . . . 9
⊢ (𝑎 = 〈𝑥, 𝑦〉 → ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 = 𝐶) |
| 111 | 110 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = 𝐶)) |
| 112 | 109, 111 | anbi12d 747 |
. . . . . . 7
⊢ (𝑎 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))) |
| 113 | | xpss 5226 |
. . . . . . . . 9
⊢ (𝐴 × 𝐵) ⊆ (V × V) |
| 114 | 113 | sseli 3599 |
. . . . . . . 8
⊢ (𝑎 ∈ (𝐴 × 𝐵) → 𝑎 ∈ (V × V)) |
| 115 | 114 | adantr 481 |
. . . . . . 7
⊢ ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) → 𝑎 ∈ (V × V)) |
| 116 | 100, 106,
112, 115 | cnvoprab 29498 |
. . . . . 6
⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} |
| 117 | 96, 116 | eqtri 2644 |
. . . . 5
⊢ ◡𝐹 = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} |
| 118 | | df-mpt 4730 |
. . . . 5
⊢ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) = {〈𝑧, 𝑎〉 ∣ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)} |
| 119 | 93, 117, 118 | 3eqtr4g 2681 |
. . . 4
⊢ (𝜑 → ◡𝐹 = (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉)) |
| 120 | 119 | fneq1d 5981 |
. . 3
⊢ (𝜑 → (◡𝐹 Fn 𝐷 ↔ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷)) |
| 121 | 12, 120 | mpbird 247 |
. 2
⊢ (𝜑 → ◡𝐹 Fn 𝐷) |
| 122 | | dff1o4 6145 |
. 2
⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ◡𝐹 Fn 𝐷)) |
| 123 | 5, 121, 122 | sylanbrc 698 |
1
⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) |