MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdif Structured version   Visualization version   GIF version

Theorem sdomdif 8108
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.)
Assertion
Ref Expression
sdomdif (𝐴𝐵 → (𝐵𝐴) ≠ ∅)

Proof of Theorem sdomdif
StepHypRef Expression
1 relsdom 7962 . . . . . 6 Rel ≺
21brrelexi 5158 . . . . 5 (𝐴𝐵𝐴 ∈ V)
3 ssdif0 3942 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
4 ssdomg 8001 . . . . . . 7 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
5 domnsym 8086 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
64, 5syl6 35 . . . . . 6 (𝐴 ∈ V → (𝐵𝐴 → ¬ 𝐴𝐵))
73, 6syl5bir 233 . . . . 5 (𝐴 ∈ V → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
82, 7syl 17 . . . 4 (𝐴𝐵 → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
98con2d 129 . . 3 (𝐴𝐵 → (𝐴𝐵 → ¬ (𝐵𝐴) = ∅))
109pm2.43i 52 . 2 (𝐴𝐵 → ¬ (𝐵𝐴) = ∅)
1110neqned 2801 1 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  wss 3574  c0 3915   class class class wbr 4653  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  domtriomlem  9264  konigthlem  9390  odcau  18019
  Copyright terms: Public domain W3C validator