MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsdom Structured version   Visualization version   GIF version

Theorem relsdom 7962
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
relsdom Rel ≺

Proof of Theorem relsdom
StepHypRef Expression
1 reldom 7961 . 2 Rel ≼
2 reldif 5238 . . 3 (Rel ≼ → Rel ( ≼ ∖ ≈ ))
3 df-sdom 7958 . . . 4 ≺ = ( ≼ ∖ ≈ )
43releqi 5202 . . 3 (Rel ≺ ↔ Rel ( ≼ ∖ ≈ ))
52, 4sylibr 224 . 2 (Rel ≼ → Rel ≺ )
61, 5ax-mp 5 1 Rel ≺
Colors of variables: wff setvar class
Syntax hints:  cdif 3571  Rel wrel 5119  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-dom 7957  df-sdom 7958
This theorem is referenced by:  domdifsn  8043  sdom0  8092  sdomirr  8097  sdomdif  8108  sucdom2  8156  sdom1  8160  unxpdom  8167  unxpdom2  8168  sucxpdom  8169  isfinite2  8218  fin2inf  8223  card2on  8459  cdaxpdom  9011  cdafi  9012  cfslb2n  9090  isfin5  9121  isfin6  9122  isfin4-3  9137  fin56  9215  fin67  9217  sdomsdomcard  9382  gchi  9446  canthp1lem1  9474  canthp1lem2  9475  canthp1  9476  frgpnabl  18278  fphpd  37380
  Copyright terms: Public domain W3C validator