MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomsdomcardi Structured version   Visualization version   GIF version

Theorem sdomsdomcardi 8797
Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
sdomsdomcardi (𝐴 ≺ (card‘𝐵) → 𝐴𝐵)

Proof of Theorem sdomsdomcardi
StepHypRef Expression
1 sdom0 8092 . . . . 5 ¬ 𝐴 ≺ ∅
2 ndmfv 6218 . . . . . 6 𝐵 ∈ dom card → (card‘𝐵) = ∅)
32breq2d 4665 . . . . 5 𝐵 ∈ dom card → (𝐴 ≺ (card‘𝐵) ↔ 𝐴 ≺ ∅))
41, 3mtbiri 317 . . . 4 𝐵 ∈ dom card → ¬ 𝐴 ≺ (card‘𝐵))
54con4i 113 . . 3 (𝐴 ≺ (card‘𝐵) → 𝐵 ∈ dom card)
6 cardid2 8779 . . 3 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
75, 6syl 17 . 2 (𝐴 ≺ (card‘𝐵) → (card‘𝐵) ≈ 𝐵)
8 sdomentr 8094 . 2 ((𝐴 ≺ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
97, 8mpdan 702 1 (𝐴 ≺ (card‘𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 1990  c0 3915   class class class wbr 4653  dom cdm 5114  cfv 5888  cen 7952  csdm 7954  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  sdomsdomcard  9382
  Copyright terms: Public domain W3C validator