MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardlim Structured version   Visualization version   GIF version

Theorem cardlim 8798
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
cardlim (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))

Proof of Theorem cardlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . . . . . . . 11 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ suc 𝑥))
21biimpd 219 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → ω ⊆ suc 𝑥))
3 limom 7080 . . . . . . . . . . . 12 Lim ω
4 limsssuc 7050 . . . . . . . . . . . 12 (Lim ω → (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥))
53, 4ax-mp 5 . . . . . . . . . . 11 (ω ⊆ 𝑥 ↔ ω ⊆ suc 𝑥)
6 infensuc 8138 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ ω ⊆ 𝑥) → 𝑥 ≈ suc 𝑥)
76ex 450 . . . . . . . . . . 11 (𝑥 ∈ On → (ω ⊆ 𝑥𝑥 ≈ suc 𝑥))
85, 7syl5bir 233 . . . . . . . . . 10 (𝑥 ∈ On → (ω ⊆ suc 𝑥𝑥 ≈ suc 𝑥))
92, 8sylan9r 690 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ suc 𝑥))
10 breq2 4657 . . . . . . . . . 10 ((card‘𝐴) = suc 𝑥 → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
1110adantl 482 . . . . . . . . 9 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (𝑥 ≈ (card‘𝐴) ↔ 𝑥 ≈ suc 𝑥))
129, 11sylibrd 249 . . . . . . . 8 ((𝑥 ∈ On ∧ (card‘𝐴) = suc 𝑥) → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴)))
1312ex 450 . . . . . . 7 (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥 → (ω ⊆ (card‘𝐴) → 𝑥 ≈ (card‘𝐴))))
1413com3r 87 . . . . . 6 (ω ⊆ (card‘𝐴) → (𝑥 ∈ On → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴))))
1514imp 445 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥𝑥 ≈ (card‘𝐴)))
16 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
1716sucid 5804 . . . . . . . . 9 𝑥 ∈ suc 𝑥
18 eleq2 2690 . . . . . . . . 9 ((card‘𝐴) = suc 𝑥 → (𝑥 ∈ (card‘𝐴) ↔ 𝑥 ∈ suc 𝑥))
1917, 18mpbiri 248 . . . . . . . 8 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘𝐴))
20 cardidm 8785 . . . . . . . 8 (card‘(card‘𝐴)) = (card‘𝐴)
2119, 20syl6eleqr 2712 . . . . . . 7 ((card‘𝐴) = suc 𝑥𝑥 ∈ (card‘(card‘𝐴)))
22 cardne 8791 . . . . . . 7 (𝑥 ∈ (card‘(card‘𝐴)) → ¬ 𝑥 ≈ (card‘𝐴))
2321, 22syl 17 . . . . . 6 ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴))
2423a1i 11 . . . . 5 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = suc 𝑥 → ¬ 𝑥 ≈ (card‘𝐴)))
2515, 24pm2.65d 187 . . . 4 ((ω ⊆ (card‘𝐴) ∧ 𝑥 ∈ On) → ¬ (card‘𝐴) = suc 𝑥)
2625nrexdv 3001 . . 3 (ω ⊆ (card‘𝐴) → ¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥)
27 peano1 7085 . . . . . 6 ∅ ∈ ω
28 ssel 3597 . . . . . 6 (ω ⊆ (card‘𝐴) → (∅ ∈ ω → ∅ ∈ (card‘𝐴)))
2927, 28mpi 20 . . . . 5 (ω ⊆ (card‘𝐴) → ∅ ∈ (card‘𝐴))
30 n0i 3920 . . . . 5 (∅ ∈ (card‘𝐴) → ¬ (card‘𝐴) = ∅)
31 cardon 8770 . . . . . . . . 9 (card‘𝐴) ∈ On
3231onordi 5832 . . . . . . . 8 Ord (card‘𝐴)
33 ordzsl 7045 . . . . . . . 8 (Ord (card‘𝐴) ↔ ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3432, 33mpbi 220 . . . . . . 7 ((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))
35 3orass 1040 . . . . . . 7 (((card‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)) ↔ ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴))))
3634, 35mpbi 220 . . . . . 6 ((card‘𝐴) = ∅ ∨ (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3736ori 390 . . . . 5 (¬ (card‘𝐴) = ∅ → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3829, 30, 373syl 18 . . . 4 (ω ⊆ (card‘𝐴) → (∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 ∨ Lim (card‘𝐴)))
3938ord 392 . . 3 (ω ⊆ (card‘𝐴) → (¬ ∃𝑥 ∈ On (card‘𝐴) = suc 𝑥 → Lim (card‘𝐴)))
4026, 39mpd 15 . 2 (ω ⊆ (card‘𝐴) → Lim (card‘𝐴))
41 limomss 7070 . 2 (Lim (card‘𝐴) → ω ⊆ (card‘𝐴))
4240, 41impbii 199 1 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  cfv 5888  ωcom 7065  cen 7952  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-card 8765
This theorem is referenced by:  infxpenlem  8836  alephislim  8906  cflim2  9085  winalim  9517  gruina  9640
  Copyright terms: Public domain W3C validator