MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem0 Structured version   Visualization version   GIF version

Theorem seqomlem0 7544
Description: Lemma for seq𝜔. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomlem0 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Distinct variable groups:   𝐹,𝑎,𝑏,𝑐,𝑑   𝐼,𝑎,𝑏,𝑐,𝑑

Proof of Theorem seqomlem0
StepHypRef Expression
1 suceq 5790 . . . 4 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
2 oveq1 6657 . . . 4 (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏))
31, 2opeq12d 4410 . . 3 (𝑎 = 𝑐 → ⟨suc 𝑎, (𝑎𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑏)⟩)
4 oveq2 6658 . . . 4 (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑))
54opeq2d 4409 . . 3 (𝑏 = 𝑑 → ⟨suc 𝑐, (𝑐𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
63, 5cbvmpt2v 6735 . 2 (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
7 rdgeq1 7507 . 2 ((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩))
86, 7ax-mp 5 1 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  c0 3915  cop 4183   I cid 5023  suc csuc 5725  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-suc 5729  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  fnseqom  7550  seqom0g  7551  seqomsuc  7552
  Copyright terms: Public domain W3C validator