![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqomlem0 | Structured version Visualization version GIF version |
Description: Lemma for seq𝜔. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomlem0 | ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 5790 | . . . 4 ⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) | |
2 | oveq1 6657 | . . . 4 ⊢ (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏)) | |
3 | 1, 2 | opeq12d 4410 | . . 3 ⊢ (𝑎 = 𝑐 → 〈suc 𝑎, (𝑎𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑏)〉) |
4 | oveq2 6658 | . . . 4 ⊢ (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑)) | |
5 | 4 | opeq2d 4409 | . . 3 ⊢ (𝑏 = 𝑑 → 〈suc 𝑐, (𝑐𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
6 | 3, 5 | cbvmpt2v 6735 | . 2 ⊢ (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
7 | rdgeq1 7507 | . 2 ⊢ ((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉)) | |
8 | 6, 7 | ax-mp 5 | 1 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 Vcvv 3200 ∅c0 3915 〈cop 4183 I cid 5023 suc csuc 5725 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ωcom 7065 reccrdg 7505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-suc 5729 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
This theorem is referenced by: fnseqom 7550 seqom0g 7551 seqomsuc 7552 |
Copyright terms: Public domain | W3C validator |